• Title/Summary/Keyword: Time Series Framework

Search Result 163, Processing Time 0.177 seconds

A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets

  • Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.115-129
    • /
    • 2022
  • Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.

서로 다른 특성의 시계열 데이터 통합 프레임워크 제안 및 활용 (Introduction and Utilization of Time Series Data Integration Framework with Different Characteristics)

  • 황지수;문재원
    • 방송공학회논문지
    • /
    • 제27권6호
    • /
    • pp.872-884
    • /
    • 2022
  • IoT 산업 발전으로 다양한 산업군에서 서로 다른 형태의 시계열 데이터를 생성하고 있으며 이를 다시 통합하여 재생산 및 활용하는 연구로 진화하고 있다. 더불어, 실제 산업에서 데이터 처리 속도 및 활용 시스템의 이슈 등으로 인해 시계열 데이터 활용 시 데이터의 크기를 압축하여 통합 활용하는 경향이 증가하고 있다. 그러나 시계열 데이터의 통합 가이드라인이 명확하지 않고 데이터 기술 시간 간격, 시간 구간 등 각각의 특성이 달라 일괄 통합하여 활용하기 어렵다. 본 논문에서는 통합 기준 설정 방법과 시계열 데이터의 통합시 발생하는 문제점을 기반으로 두 가지의 통합 방법을 제시하였다. 이를 기반으로 시계열 데이터의 특성을 고려한 이질적 시계열 데이터 통합 프레임워크를 구성하였으며 압축된 서로 다른 이질적 시계열 데이터의 통합과 다양한 기계 학습에 활용할 수 있음을 확인하였다.

시계열 프레임워크를 이용한 효율적인 클라우드서비스 품질·성능 관리 방법 (An Efficient Cloud Service Quality Performance Management Method Using a Time Series Framework)

  • 정현철;서광규
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.121-125
    • /
    • 2021
  • Cloud service has the characteristic that it must be always available and that it must be able to respond immediately to user requests. This study suggests a method for constructing a proactive and autonomous quality and performance management system to meet these characteristics of cloud services. To this end, we identify quantitative measurement factors for cloud service quality and performance management, define a structure for applying a time series framework to cloud service application quality and performance management for proactive management, and then use big data and artificial intelligence for autonomous management. The flow of data processing and the configuration and flow of big data and artificial intelligence platforms were defined to combine intelligent technologies. In addition, the effectiveness was confirmed by applying it to the cloud service quality and performance management system through a case study. Using the methodology presented in this study, it is possible to improve the service management system that has been managed artificially and retrospectively through various convergence. However, since it requires the collection, processing, and processing of various types of data, it also has limitations in that data standardization must be prioritized in each technology and industry.

On A New Framework of Autoregressive Fuzzy Time Series Models

  • Song, Qiang
    • Industrial Engineering and Management Systems
    • /
    • 제13권4호
    • /
    • pp.357-368
    • /
    • 2014
  • Since its birth in 1993, fuzzy time series have seen different classes of models designed and applied, such as fuzzy logic relation and rule-based models. These models have both advantages and disadvantages. The major drawbacks with these two classes of models are the difficulties encountered in identification and analysis of the model. Therefore, there is a strong need to explore new alternatives and this is the objective of this paper. By transforming a fuzzy number to a real number via integrating the inverse of the membership function, new autoregressive models can be developed to fit the observation values of a fuzzy time series. With the new models, the issues of model identification and parameter estimation can be addressed; and trends, seasonalities and multivariate fuzzy time series could also be modeled with ease. In addition, asymptotic behaviors of fuzzy time series can be inspected by means of characteristic equations.

어닐링에 의한 Hierarchical Mixtures of Experts를 이용한 시계열 예측 (Prediction of Time Series Using Hierarchical Mixtures of Experts Through an Annealing)

  • 유정수;이원돈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.360-362
    • /
    • 1998
  • In the original mixtures of experts framework, the parameters of the network are determined by gradient descent, which is naturally slow. In [2], the Expectation-Maximization(EM) algorithm is used instead, to obtain the network parameters, resulting in substantially reduced training times. This paper presents the new EM algorithm for prediction. We show that an Efficient training algorithm may be derived for the HME network. To verify the utility of the algorithm we look at specific examples in time series prediction. The application of the new EM algorithm to time series prediction has been quiet successful.

  • PDF

The Change Point Analysis in Time Series Models

  • Lee, Sang-Yeol
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 추계 학술발표회 논문집
    • /
    • pp.43-48
    • /
    • 2005
  • We consider the problem of testing for parameter changes in time series models based on a cusum test. Although the test procedure is well-established for the mean and variance in time series models, a general parameter case has not been discussed in the literature. Therefore, here we develop a cusum test for parameter change in a more general framework. As an example, we consider the change of the parameters in an RCA(1) model and that of the autocovariances of a linear process. We also consider the variance change test for unstable models with unit roots and GARCH models.

  • PDF

수준에서의 변화에 적응하는 구조모형 (An Adaptive Structural Model When There is a Major Level Change)

  • 전덕빈
    • 한국경영과학회지
    • /
    • 제12권1호
    • /
    • pp.19-26
    • /
    • 1987
  • In analyzing time series, estimating the level or the current mean of the process plays an important role in understanding its structure and in being able to make forecasts. The studies the class of time series models where the level of the process is assumed to follow a random walk and the deviation from the level follow an ARMA process. The estimation and forecasting problem in a Bayesian framework and uses the Kalman filter to obtain forecasts based on estimates of level. In the analysis of time series, we usually make the assumption that the time series is generated by one model. However, in many situations the time series undergoes a structural change at one point in time. For example there may be a change in the distribution of random variables or in parameter values. Another example occurs when the level of the process changes abruptly at one period. In order to study such problems, the assumption that level follows a random walk process is relaxed to include a major level change at a particular point in time. The major level change is detected by examining the likelihood raio under a null hypothesis of no change and an alternative hypothesis of a major level change. The author proposes a method for estimation the size of the level change by adding one state variable to the state space model of the original Kalman filter. Detailed theoretical and numerical results are obtained for th first order autoregressive process wirth level changes.

  • PDF

A PARAMETER CHANGE TEST IN RCA(1) MODEL

  • Ha, Jeong-Cheol
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.135-138
    • /
    • 2005
  • In this paper, we consider the problem of testing for parameter change in time series models based on a cusum of squares. Although the test procedure is well-established for the mean and variance in time series models, a general parameter case was not discussed in literatures. Therefore, here we develop the cusum of squares type test for parameter change in a more general framework. As an example, we consider the change of the parameters in an RCA(1) model. Simulation results are reported for illustration.

  • PDF

Sequential Test for Parameter Changes in Time Series Models

  • 이상열;하정철
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.185-189
    • /
    • 2001
  • In this paper, we consider the problem of testing for parameter changes in time series models based on a sequential test. Although the test procedure is well-established for the mean and variance change, a general parameter case has not been discussed in the literature. Therefore, we develop a sequential test for parameter changes in a more general framework.

  • PDF

다변량 지수평활모형을 이용한 환율 분석 (Multivariate exponential smoothing models with application to exchange rates)

  • 이연하;성병찬
    • 응용통계연구
    • /
    • 제33권3호
    • /
    • pp.257-267
    • /
    • 2020
  • 본 논문은 단변량 지수평활법의 확장된 형태인 다변량 지수평활법을 소개하고 다변량 시계열 분석에 활용한다. 다변량 지수평활법은 한 개의 오차를 기반으로 하는 상태공간모형을 이용하여 추정의 편리성을 제고하며, 다변량 시계열간의 잠재적인 상호연관성을 활용하여 적합도 및 예측력을 향상시킨다. 다변량 지수평활법의 성능을 평가하기 위하여 월별 원/달러 및 원/파운드 환율자료를 분석하고 예측한다. 대안 모형의 예측 결과와 비교하여 다변량 지수평활법의 우수성을 확인한다.