• Title/Summary/Keyword: Time Determination

Search Result 2,994, Processing Time 0.039 seconds

Factors Affecting True Metabolizable Energy Determination of Poultry Feedingstuffs IV. The Effect of Protein Levels of Basal Diets on the Corrected Apparent Metabolizable Energy of Farrell and True Metabolizable Energy Values of Corn and Soybean Meal (양계사료의 True Metabolizable Energy 측정에 영향하는 요인에 관한 시험 IV. 기초사료의 단백수준이 옥수수와 대두백의 Corrected Apparent Metabalizable Energy of Farrell 및 True Metabolizable Energy 가에 미치는 영향)

  • 이영철
    • Korean Journal of Poultry Science
    • /
    • v.11 no.2
    • /
    • pp.99-108
    • /
    • 1984
  • The experiment was performed with the aim to study not only the effect of protein levels of basal diets on apparent and true metabolizable energy (AME and THM), AME of Farrell(AME$\_$F/), and corrected AME$\_$FC/ values of corn and soybean meal but also the effect of collection time of excreta on AME and TME values of corn and soybean meal. The AME$\_$F/ and AME$\_$FC/ values of test materials were determined through rapid AME bioassay, and AME and TME by the TME bioassay. The protein levels of basal diets had range from 10% crude protein(CP) to 30% CP. The results obtained were as follows; 1. The AME$\_$F/ values of basal diets showed much difference among treatments (P<0.05) but those of corn and soybean meal had no significant differences (P>0.05)and the AHE$\_$FC/ values of basal diets were proved to be variable according to level of protein of the diets. the AME$\_$FC/ values of com were not different while those of soybean meal in 20% and 30% were reduced significantly(P<0.05). 2. The protein intake/bird/day did not differ significantly due to variation of feed intake using rapid AME bioassay. 3. The protein levels of basal diets did not influence upon the AME value of basal diets, corn and soybean meal (P>0.05), and no clear trend was found in the TME values of corn and soybean meal because of the variation of metabolic fecal energy plus endogenous urinary energy (FEm+UEe) losses fed different diets. 4. Collection time of excreta affected the AME and TME values of basal diets in 10, 15, 20% CP treatments, but the AME and TME of corn and soybean meal were not affected by collection time; Thus, a time of 24 hours was mough for 24 hr to clean the digestive tract when fed corn and soybean meal substituted diets regardless of protein levels.

  • PDF

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

Simultaneous Determination and Mornitoring of Aflatoxin and Ochratoxin A in Food (식품 중 아플라톡신과 오크라톡신 A의 동시분석법 개발 및 모니터링)

  • Park, Ji-Won;Yoo, Myung-Sang;Kuk, Ju-Hee;Ji, Young-Ae;Lee, Jin-Ha
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2013
  • The simultaneous analysis and monitoring of aflatoxin $B_1$, $G_1$, $B_2$, $G_2$ and ochratoxin A in foods were carried out by HPLC with fluorescence detection. The samples were extracted with methanol/water mixture. The extract was centrifuged, diluted with phosphate buffer saline (PBS), filtered, and applied to an immunoaffinity column containing antibodies specific to both aflatoxins and ochratoxin A. After washing the column with PBS and water, the toxins were eluted from the column with methanol, and quantified by HPLC, with a run time of approximately 30 min. The recoveries for aflatoxin $B_1$, $G_1$, $B_2$, $G_2$ and ochratoxin A in foods were 78.4~101.5%, 73.3~102.1%, 81.7~106.7%, 67.0~104.6% and 78.7~120.8%, respectively. The limits of detection of aflatoxins and ochratoxin A ranged from 0.05 to $0.18{\mu}g/kg$. According to monitoring result with the established method, aflatoxin $B_1$ and ochratoxin A were found in 13 of 151 domestic commercial foods. The contamination levels were $0.32{\sim}1.80{\mu}g/kg$ for aflatoxin $B_1$ and $0.97{\mu}g/kg$ for ochratoxin A. Therefore, this study showed all commercial foods monitored were safe under the Korean standards for aflatoxins and ochratoxin A.

Determination of methamphetamine, 4-hydroxymethamphetamine, amphetamine and 4-hydroxyamphetamine in urine using dilute-and-shoot liquid chromatography-tandem mass spectrometry (시료 희석 주입 LC-MS/MS를 이용한 소변 중 메스암페타민, 4-하이드록시메스암페타민, 암페타민 및 4-하이드록시암페타민 동시 분석)

  • Heo, Bo-Reum;Kwon, NamHee;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • The epidemic of disorders associated with synthetic stimulants, such as methamphetamine (MA) and amphetamine (AP), is a health, social, legal, and financial problem. Owing to the high potential of their abuse and addiction, reliable analytical methods are required to detect and identify MA, AP, and their metabolites in biological samples. Thus, a dilute-and-shoot liquid chromatography-tandem mass spectrophotometry (LC-MS/MS) was developed for simultaneous determination of MA, 4-hydroxymethamphetamine (4HMA), AP, and 4-hydroxyamphetamine (4HA) in urine. Urine sample ($100{\mu}L$) was mixed with $50{\mu}L$ of mobile phase consisting of 0.4 % formic acid and methanol and $50{\mu}L$ of working internal-standard solution. Aliquots of $8{\mu}L$ diluted urine was injected into the LC-MS/MS system. For all analytes, chromatographic separation was performed using a C18 reversed-phase column with gradient elution and a total run time of 5 min. The identification and quantification were performed by multiple reaction monitoring (MRM). Linear least-squares regression was conducted to generate a calibration curve, with $1/x^2$ as the weighting factor. The linear ranges were 2.0-200, 1.0-800, and 10-2500 ng/mL for 4HA and 4HMA, AP, and MA, respectively. The inter- and intraday precisions were within 6.6 %, whereas the inter- and intraday accuracies ranged from -14.9 to 11.3 %. The low limits of quantification were 2.0 ng/mL (4HA and 4HMA), 1.0 ng/mL (AP), and 10 ng/mL (MA). The proposed method exhibited satisfactory selectivity, dilution integrity, matrix effect, and stability, which are required for validation. Moreover, the purification efficiency of high-speed centrifugation was clearly higher than 6-15 % for QC samples (n=5), which was higher than that of the membrane-filtration method. The applicability of the proposed method was tested by forensic analysis of urine samples from drug abusers.

Simultaneous Determination of 8 Preservatives (6 Parabens, 2-Phenoxyethanol, and Chlorphenesin) in Cosmetics by $UPLC^{TM}$ ($UPLC^{TM}$를 이용한 화장품 중 보존제 8종(파라벤 6종, 페녹시에탄올, 클로페네신)의 동시분석)

  • Park, Jeong-Eun;Lee, So-Mi;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-267
    • /
    • 2007
  • Parabens are used in nearly all types of cosmetics and toiletries because they are formulated well and have broad spectrum of activity, interness, low costs and excellent chemical stability in relation to pH. 2-phenoxyethanol and chlorphenesin are common preservatives which are usually used in combination with parabens in cosmetics. Toxicity of parabens is generally low but application of parabens to damaged or broken skin has resulted in sensitization. Moreover, the possibility of their estrogenic potential, anesthetic effects and reproductive toxicity has been reported. Consequently there are some regulations in use of parabens. And the maximum permitted concentrations of chlorphenesin and 2-phenoxyethanol in cosmetic products are authorized by the same reasons. So it is important to control and estimate the amount of parabens in products. In this article, we proposed a valid method for the simultaneous determination of 8 preservatives including parabens in a short time using ultra performance liquid $chromatography^{TM}\;(UPLC^{TM})$. Separation of eight components was achieved in less than 10 min and resolutions were reasonable (USP resolution ${\geqq}\;2$). And limit of detection and quantification were evaluated. The method was suitably validated for specificity, linearity, precision (repeatability, intermediate precision) and accuracy for assay (recovery) based on International conference on harmonisation (ICH) guideline. The method was applicable to analysis of preservatives in cosmetic products.

Determination of Electron Spin Relaxation Time of the Gadolinium-Chealted MRI Contrast Agents by Using an X-band EPR Technique (EPR을 통한 상자성 자기공명 조영제의 전자스핀 이완시간의 결정)

  • Sung-wook Hong;Yongmin Chang;Moon-jung Hwang;Il-su Rhee;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Purpose: To determine the electronic spin relaxation times, $T_{le}$, of three commercially available Gd-chelated MR contrast agents, Gd-DTPA, Gd-DTPA-BMA and Gd-DOTA, using Electron Paramagnetic Resonance(EPR) technique. Material and Methods: The paramagnetic MR contrast agents, Gd-DTFA(Magnevist) , Gd-DTFA-BMA(OMNISCAN) and Gd-DOTA(Dotarem), were used for this study, The EPR spectra of these contrast agents, which were prepared 2:1 methanol/water solution, were obtained at low temperatures, from $-160^{\circ}C~20^{\circ}C$. The glassy-state EPR spectra for these contrast agents were then fitted by the simulation spectra generated with different zero-field splitting (ZFS) parameters by a computer simulation program 'GEN', which generates the EPR powder spectrum using a given ZFS in $3{\times}3$ tensor. Finally, the spin relaxation times of the contrast agents were then determined from the $T_{2e}$, D, and E values of the best simulation spectra using the McLachlan's theory of average relaxation rate. Results: The electronic transverse spin relaxation times, $T_{2e}'s$, of Gd-DTPA, Gd-DTPA-BMA and Gd-DOTA were 0.113ns, 0.147ns and 1.81ns respectively. The g-values were 1.9737, 1.9735 and 1.9830 and the electronic spin relaxation times, $T_{1e}'s$, were 18.70ns, 33.40ns and $1.66{\mu}s$, respectively. Conclusion: The results of these studies reconfirm that the paramagnetic MR contrast agents with larger ZFS parameters should have shorter $T_{1e}'s$. Among three contrast agents used for this study, Gd-DOTA chelated with cyclic ligand structure shows better electronic property then the others with linear structure. Thus, it is concluded that the exact determination of ZFS parameters is the important factor in evaluating relaxation enhancement effect of the agents and in developing new contrast agents.

  • PDF

Determination of Soluble Carbohydrates in Soybean Seeds Using High Performance Liquid Chromatography with Evaporative Light Scattering Detection (증기화광산란 검출기를 이용한 콩 함유 수용성 탄수화물의 분석)

  • Kim, Gyeong-Ha;Hwang, Young-Sun;Ahn, Kyung-Geun;Kim, Gi-Ppeum;Kim, Min-Ji;Hong, Seung-Beom;Moon, Jung-Kyeong;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1062-1067
    • /
    • 2014
  • In the present study, a new analytical method was devised for the simultaneous determination of soluble carbohydrates in soybean seeds using high performance liquid chromatography/evaporative light scattering detection (HPLC/ELSD). The limit of quantification (LOQ) for soybean soluble carbohydrates ranged from 5.6~7.6 mg/kg using the HPLC/ELSD method and from 16.2~33.9 mg/kg using the high performance liquid chromatography/refractive index detection (HPLC/RID) method. Therefore, the HPLC/ELSD method was more sensitive than HPLC/RID. The precision values for retention time and peak area of the HPLC/ELSD method were evaluated by inter-day (n=5) and intra-day (n=10) assays using a standard solution. All precision values (CV<2.5%) for soybean soluble carbohydrates were acceptable and fulfilled international acceptance criteria. All linear calibration curves were obtained with a correlation coefficient of $R^2$ >0.999. The contents of soluble carbohydrates for the "Shingikong" (yellow soybean) and "Cheongjakong 3" (black soybean) samples were analyzed using the HPLC/RID and HPLC/ELSD methods. The difference in carbohydrate contents between the two detection methods was significant. Carbohydrate contents in the HPLC/ELSD method were higher than those in the HPLC/RID method. Overall, the HPLC/ELSD method showed satisfactory resolution with a favorable LOQ and reproducibility. Therefore, these results indicate that the HPLC/ELSD method may be applied to determine the contents of soluble carbohydrates in soybean seeds and related food stuffs.

Development and Validation of the Determination of Sorafenib in Human Plasma using Tandem Mass Spectrometry Coupled with Liquid Chromatography (고속액체크로마토그래피 텐덤질량분석기법을 이용한 사람 혈장 내 소라페닙 농도분석법의 개발 및 검정)

  • Park, Daejin;Lee, Sunggon;Kim, Woomi
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1456-1462
    • /
    • 2012
  • Sorafenib is a multikinase inhibitor and an oral anticancer drug approved for the treatment of patients with advanced renal cell carcinoma and those with unresectable hepatocellular carcinoma. The purpose of this study was to develop an efficient method of the determination of sorafenib in human plasma using tandem mass spectrometry coupled with liquid chromatography (LC/MS/MS) and validate the method by the guidelines of the Korean Food and Drug Administration (KFDA). Plasma samples ($100{\mu}l$) were added with chlorantraniliprole as an internal standard and then mixed with the 0.1% formic acid-containing extraction solution composed of isopropyl alcohol and ethyl acetate (1:4, v/v). After centrifugation, the supernatant was concentrated at $45^{\circ}C$ under negative pressure and centrifugal force. The residue was reconstituted with a mobile phase and injected into the HPLC instrument using a reverse phase Waters XTerra$^{TM}$ C18 column (particle size $3.5{\mu}m$). Liquid chromatography was carried out within the run time of 5 min using a mobile phase composed of buffer (0.1% formic acid and 10 mM ammonium formate), methanol, and acetonitrile (1:6:3, v/v/v). The analytes were monitored by tandem mass spectrometry in the multiple reaction monitoring method programmed to detect sorafenib at 'm/z 465.2 ${\rightarrow}$ 252.5' and chlorantraniliprole at 'm/z 484.4 ${\rightarrow}$ 286.2' with positive electrospray ionization mode ($ES^+$). The result showed the proper linearity ($r^2$ > 0.99) over the range of 2,000-5,000 ng/ml with good accuracy (90.7-103.9%) and precision (less than 10%). The newly developed method using LC/MS/MS was validated by the guideline of KFDA and identified as more sensitive compared to the previous methods.