• Title/Summary/Keyword: Time Delayed Data

Search Result 335, Processing Time 0.03 seconds

Operation Measures of Sea Fog Observation Network for Inshore Route Marine Traffic Safety (연안항로 해상교통안전을 위한 해무관측망 운영방안에 관한 연구)

  • Joo-Young Lee;Kuk-Jin Kim;Yeong-Tae Son
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.188-196
    • /
    • 2023
  • Among marine accidents caused by bad weather, visibility restrictions caused by sea fog occurrence cause accidents such as ship strand and ship bottom damage, and at the same time involve casualties caused by accidents, which continue to occur every year. In addition, low visibility at sea is emerging as a social problem such as causing considerable inconvenience to islanders in using transportation as passenger ships are collectively delayed and controlled even if there are local differences between regions. Moreover, such measures are becoming more problematic as they cannot objectively quantify them due to regional deviations or different criteria for judging observations from person to person. Currently, the VTS of each port controls the operation of the ship if the visibility distance is less than 1km, and in this case, there is a limit to the evaluation of objective data collection to the extent that the visibility of sea fog depends on the visibility meter or visual observation. The government is building a marine weather signal sign and sea fog observation networks for sea fog detection and prediction as part of solving these obstacles to marine traffic safety, but the system for observing locally occurring sea fog is in a very insufficient practical situation. Accordingly, this paper examines domestic and foreign policy trends to solve social problems caused by low visibility at sea and provides basic data on the need for government support to ensure maritime traffic safety due to sea fog by factually investigating and analyzing social problems. Also, this aims to establish a more stable maritime traffic operation system by blocking marine safety risks that may ultimately arise from sea fog in advance.

Study on the Meteological Effects on the Plant Growth and Yield of Rice (기상요인(氣象要因)이 수도(水稻)의 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Jo, Jai Seong;Lee, Jong Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.111-123
    • /
    • 1975
  • 6 years data on the plant growth and grain yield of 13 rice varieties were investigated to define the relations between meteological conditions and plant growth of rice including grain yield. The results obtained are summarized as follows; 1. Variation of average temperature by years showed great number at early and middle July, middle August and early November, however smallest figure at late June and late July. And that of sunshine hours by years were least at late June and late July, and largest at middle July. 2. Among rice yield components variation of panicle number per hill by years was biggest and that of 1000 grain weight least. Rate of variation of plant growth and rice yield was different by rice varieties. 3. Direct effects on rice yield was greatest at maturing ratio and next at 1000 grain weight. The effects of yield factor on the rice yield wers different by years. 4. Higher temperature and longer sunshine delayed the miaxmum tillering stage but shortened the days from seeding to heading. 5. A significant negative correlation was recognized between the number of panicles per hill and average temperature of 11 to 40 days after transplanting, and number of grains per panicle was correlated with the average temperature of 11 to 70 days after transplanting. High temperature before heading time showed atime decreased maturing ratio. 6. Accumulated temperature was highly correlated with 1000 grain weight in all season. Highest positive correltaion was recognized between grain yield of rice and average temperature of 61 to 70 days after transplanting but correlations between rice yield and average temperature after heading stage were negative. 7. Highly significant correlations were confirmed between maturing ratio and sunshine hours of 31 to 50 days as well as 61 to 70 days after transplanting, and maturing ratio was highly correlated with accumulated hours of sunshine. Correlation between rice yield and hours of sunshine was significant at 51 to 60 days after transplanting.

  • PDF

Spring Phonology of a Grapevine Cultivar under the Changing Climate in Korea during 1921-2000 (겨울기온 상승에 따른 낙엽과수의 휴면생태 변화)

  • Jung Jea-Eun;Seo Hee-Cheol;Chung U-Ran;Yun Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • Remarkable winter season warming has been observed in East Asian countries during the last century. Accordingly, significant effects on dormancy and the resulting budburst of deciduous trees are expected. However phenological observations are rare and insufficient compared with the long-time climate records in the same region. A chill-day accumulation, which can be estimated from daily maximum and minimum temperature, is expected to make a reasonable proxy for dormancy depth of temperate zone fruit trees. To simulate dormancy depth during 1921-2004, a chill-day model parameterized for 'Campbell Early' grapevine, which is the major cultivar grown virtually anywhere in South Korea, was applied to daily temperature data at 8 locations in South Korea. The calculations showed that the chilling requirement for breaking endo-dormancy of this grapevine cultivar can be satisfied by mid-January to late February in South Korea, and the date was delayed going either northward or southward from the 'Daegu-Jeonju' line crossing the middle of South Korea in the east-west direction. Maximum length of the cold tolerant period (the number of days between endo-dormancy release and forced dormancy release) showed the same spatial pattern. When we divide the 83 years into 3 periods (I: 1921-1950, II: 1951-1980, and III: 1981-2004) and get the average of each period, dormancy release date of period III was accelerated by as much as 15 days compared with that of period I at all locations except Jeju (located in the southernmost island with subtropical climate) where an average15-day delay was predicted. The cold- tolerant period was also shortened at 6 out of 8 locations. As a result, budburst of 'Campbell Early' in spring was accelerated by 6 to 10 days at most locations, while inter-annual variation in budburst dates was increased at all locations. The earlier budburst after the 1970s was due to (1) warming in winter resulting in earlier dormancy release (Incheon, Mokpo, Gangneung, and Jeonju), (2) warming in early spring accelerating regrowth after breaking dormancy (Busan and Jeju), and (3) both of them (Seoul and Daegu).

Studies on the selection in soybean breeding. -II. Additional data on heritability, genotypic correlation and selection index- (대두육종에 있어서의 선발에 관한 실험적연구 -속보 : 유전력ㆍ유전상관, 그리고 선발지수의 재검토-)

  • Kwon-Yawl Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.89-98
    • /
    • 1965
  • The experimental studies were intended to clarify the effects of selection, and also aimed at estimating the heritabilities, the genotypic correlations among some agronomic characters, and at calculating the selection index on some selective characters for the selection of desirable lines, under different climatic conditions. Finally practical implications of these studies, especially on the selection index, were discussed. Twenty-two varieties, determinate growing habit type, were selected at random from the 138 soybean varieties cultivated the year before, were grown in a randomized block design with three replicates at Chinju, Korea, under May and June sowing conditions. The method of estimating heritabilities for the eleven agronomic characters-flowering date, maturity date, stem length, branch numbers per plant, stem diameter, plant weight, pod numbers per plant, grain numbers per plant and 100 grain weight, shown in Table 3, was the variance components procedures in a replicated trial for the varieties. The analysis of covariance was used to obtain the genotypic correlations and phenotypic correlations among the eight characters, and the selection indexes for some agronomic characters were calculated by Robinson's method. The results are summarized as follows: Heritabilities : The experiment on the genotype-environment interaction revealed that in almost all of the characters investigated the interaction was too large to be neglected and materially affected the estimates of various genotypic parameters. The variation in heritability due to the change of environments was larger in the characters of low heritability than in those of high heritability. Heritability values of flowering date, fruiting period (days from flowering to maturity), stem length and 100 grain weight were the highest in both environments, those of yield(grain weight) and other characters were showed the lower values(Table 3). These heritability values showed a decreasing trend with the delayed sowing in the experiments. Further, all calculated heritability values were higher than anticipated. This was expected since these values, which were the broad sense heritability, contain the variance due to dominance and epistasisf in addition to the additive genetic variance. Genotypic correlations : Genotypic correlations were slightly higher than the corresponding phenotypic correlations in both environments, but the variation in values due to the change of environment appeared between grain weight and some other characters, especially an increase between grain weight and flowering date, and the total growing period(Table 6). Genotypic correlations between grain weight and other characters indicated that high seed yield was genetically correlated with late flowering, late maturity, and the other five characters namely branch numbers per plant, stem diameter, plant weight, pod numbers per plant and grain numbers per plant, but not with 100 grain weight of soybeans. Pod numbers and grain numbers per plant were more closely correlated with seed yields than with other characters. Selection index : For the comparison and the use of selection indexes in the selection, two kinds of selection indexes were calculated, the former was called selection index A and the later selection index B as shown in Table 7. Selection index A was calculated by the values of grain weight per plant as the character of yield(character Y), but the other, selection index B, was calculated by the values of pod numbers per plant, instead of grain weight per plant, as the character of yield'(character Y'). These results suggest that selection index technique is useful in soybean breeding. In reality, however, as the selection index varies with population and environment, it must be calculated in each population to which selection is applied and in each environment in which the population is located. In spite of the expected usefulness of selection index technique in soybean breeding, unsolved problems such as the expense, time and labor involved in calculating the selection index remain. For these reasons and from these experimental studies, it was recognized that in the breeding of self-fertilized soybean plants the selection for yield should be based on a more simple selection index such as selection index B of these experiments rather than on the complex selection index such as selection index A. Furthermore, it was realized that the selection index for the selection should be calculated on the basis of the data of some 3-4 agronomic characters-maturity date(X$_1$), branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant etc. It must be noted that it should be successful in selection to select for maturity date(X$_1$) which has high heritability, and the selection index should be calculated easily on the basis of the data of branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant, directly after the harvest before drying and threshing. These characters should be very useful agronomic characters in the selection of Korean soybeans, determinate growing habit type, as they could be measured or counted easily thus saving time and expense in the duration from harvest to drying and threshing, and are affected more in soybean yields than the other agronomic characters.

  • PDF

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF