• Title/Summary/Keyword: Time Delay System

Search Result 2,720, Processing Time 0.031 seconds

Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture (n-Propanol과 n-Octane 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The lowest values of the AITs(Autoignition temperatures) in the literature were normally used fire and explosion protection. In this study, the AITs of n-Propanol+n-Octane system were measured from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Octane which constituted binary systems were $435^{\circ}C$ and $218^{\circ}C$, respectively. The experimental ignition delay time of n-Propanol+n-Octane system were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).

Analysis of Criteria for Selecting Load Redistribution Algorithm for Fault-Tolerant Distributed System (분산 시스템의 결함시 재분배 알고리즘의 선정기준을 위한 특성 분석)

  • 최병갑
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.89-98
    • /
    • 1994
  • In this paper, a criteria for selecting an appropriate load redistribution algorithm is devised so that a fault-tolerance distributed system can operte at its optimal efficience. To present the guideline for selecting redistributing algorithms, simulation models of fault-tolerant system including redistribution algorithms are developed using SLAM II. The job arrival rate, service rate, failure and repair rate of nodes, and communication delay time due to load migration are used as parameters of simulation. The result of simulation shows that the job arrival rate and the failure rate of nodes are not deciding factors in affecting the relative efficiency of algorithms. Algorithm B shows relatively a consistent performance under various environments, although its performance is between those of other algorithms. If the communication delay time is longer than average job processing time, the performance of algorithm B is better than others. If the repair rate is relatively small or communication delay time is longer than service time, algorithm A leads to good performance. But in opposite environments, algorithm C is superior to other algorithms.

  • PDF

Position Control of an Object Using Vision Sensor (비전 센서를 이용한 물체의 위치 제어)

  • Ha, Eun-Hyeon;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • In recent years, owing to the development of the image processing technology, the research to build control system using a vision sensor is stimulated. However, the time delay must be considered, because it works of time to get the result of an image processing in the system. It can be seen as an obstacle factor to real-time control. In this paper, using the pattern matching technique, the location of two objects is recognized from one image which was acquired by a camera. And it is implemented to a position control system as feedback data. Also, a possibility was shown to overcome a problem of time delay using PID controller. A number of experiments were done to show the validity of this study.

Optimal Design of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 최적설계)

  • 김성열;이금원
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.97-100
    • /
    • 2000
  • Deadbeat property is well established in digital control system design in time domain. But in continuous time system, deadbeat is impossible because of it's ripples between sampling points. But several researchers suggested delay elements. From some specifications such as Internal model stability, physical realizations and finite time settling, unknown polynomials with delay elements in error transfer functions can be calculated. For the application to the real system, robustness property can be added. In this paper, error transfer function is specified with 1 delay element and unkown coefficients are calculated from the specs. Especially, by varying settling time and the user-specified poles, a deadbeat controller with lower order is obtained.

  • PDF

제어 응용에 있어서 CORBA, DCOM 및 TSPACE의 시간 특성 연구

  • 박홍성;강원준;김형육;김경식;강정모
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.548-548
    • /
    • 2000
  • This paper measures and compares time delays between CORBA, DCOM, TSpaces Objects designed for distributed control systems. To compare time delay for each object, this paper implements the ball and beam control system. And the reasons of delay have been studied.

  • PDF

Measurement Time-Delay Compensation and Initial Attitude Determination of Electro-Optical Tracking System Using Augmented Kalman Filter (Augmented 칼만 필터를 이용한 전자광학 추적 장비의 측정치 시간지연 보상과 초기 자세 결정)

  • Son, Jae Hoon;Choi, Woo Jin;Kim, Sung-Su;Oh, Sang Heon;Lee, Sang Jeong;Hwang, Dong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1589-1597
    • /
    • 2021
  • Due to the low output rate and time delay of vehicle's navigation results, the electro-optical tracking system(EOTS) cannot estimate accurate target positions. If an inertial measurement unit(IMU) is additionally mounted into the EOTS and inertial navigation system(INS) is constructed, the high navigation output rate can be obtained. And the time-delay can be compensated by using the augmented Kalman filter. An accurate initial attitude is required in order to have accurate navigation outputs. In this paper, an attitude determination algorithm is proposed using the augmented Kalman filter in order to compensate measurement delay of the EOTS and have accurate initial attitude. The proposed initial attitude determination algorithm consists of an augmented Kalman filter, an INS, and an integrated Kalman filter. The augmented Kalman filter compensates the time-delay of the vehicle's navigation results and the integrated Kalman filter estimates the navigation error of the INS. In order to evaluate performance of the proposed algorithm, vehicle's navigation outputs and IMU measurements were generated using sensors' model-based measurement generator and initial attitude estimation errors of the proposed algorithm and the conventional algorithm without the augmented Kalman filter were compared for the generated measurements. The evaluation results show that the proposed algorithm has better accuracy.

Design of Real-time Video Acquisition for Control of Unmanned Aerial Vehicle

  • Jeong, Min-Hwa
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • In this paper, we analyze the delay phenomenon that can occur when controlling an unmanned aerial vehicle using a camera and describe a solution to solve the phenomenon. The group of pictures (GOP) value is changed in order to reduce the delay according to the frame data size that can occur in the moving image data transmission. The appropriate GOP values were determined through experimental data accumulation and validated through camera self-test, system integration laboratory (SIL) verification test and system integration test.

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

Analysis of Transfer Characteristics and Time-delay of Control System based on Clustering Web Server (클러스터 웹서버 제어시스템의 Time-delay 및 전달 특성 분석)

  • Nahm, Eui-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.219-227
    • /
    • 2014
  • Ethernet, ATM, and CAN are wide-utilized communication protocols for information transfer by internet. Many researches about Network Time-delay have been based on network modeling. But almost of them have not shown an optimal solution in various communication environments. So, asynchronous sample system modeling based internet is needed to be robust in various network environments. Also as closed loop system in internet has a different operational characteristics and noise characteristics comparing with conventional control system, new robust control method is needed in instruments which demand to be safe and precise for internet environments. In order to achieve the safe and precise real-time control in remote plant, this paper is aimed to analysis the transfer characteristics and time-delay of control system in cluster web server.