• Title/Summary/Keyword: Time Delay Profile

Search Result 74, Processing Time 0.024 seconds

Assessment of bovine blood sample stability for complete blood count and blood gases and electrolytes analysis during storage

  • Espiritu, Hector M.;Faruk, Shohel Al;Lee, Gyeong-jae;Lopez, Bryan Irvine M.;Lee, Sang-suk;Cho, Yong-il
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.4
    • /
    • pp.265-274
    • /
    • 2019
  • Delayed arrival of blood samples from the field and a large number of samples delivered often causes delay in sample analysis leading to inaccurate measurements. Therefore, this study aimed to assess whether prolonged storage in refrigerator could influence the stability of cattle blood samples and to establish an optimal time limit for complete blood count (CBC) parameters and blood gas and electrolyte (BGE) parameters analyses. Samples collected from healthy cows were tested immediately for CBC and BGE using automated hematology, blood gas and electrolyte analyzers. Samples were kept in refrigerator at 4℃ and analyzed after 6 h, 12 h, 24 h, 48 h, 72 h, 120 h, and 192 h of storage. Mean differences between observations were assessed at 5% significance level using ANOVA and Duncan's multiple range test. Total CBC parameters and the platelet profile remained stable for 192 h, except for MCHC. Among leukocyte-related counts, NEU and EOS remained stable for 192 hours. WBC and LYM, and MONO values produced inconsistent measurements which recovered its initial measurement after 12 h and 24 h of storage, respectively, then remained stable until 120 h. Among the blood gas indices, PCO2, PO2, tCO2, and BE showed declining and significant changes over time, but pH, tHb, and SO2 remained stable for 192 h. Electrolyte status in the blood showed that ions are unstable and tend to change in as early as 6 h of storage. This study established that cattle blood specimens for CBC analysis can be stored for 120 h at 4℃, but specimens for BGE analyses must be tested within 6 to 24 h.

A Service Push System Based on JXTA (JXTA 기반 서비스 푸시 시스템)

  • Cho, Yoon-Sik;Jung, In-Hwan;Hwang, Ki-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.56-66
    • /
    • 2009
  • In the traditional Server/Client architecture, the client connects to the known servers and gets information through web searching. However, nowadays, diverse internet devices providing services (get) working on internet easily. The update interval of the services or information provided by the devices is relatively short. And also they tend to be both a server and a client. In this situation, the way of the traditional information searching such as web searching is not appropriate. In this paper we propose a service push model, where it pushes its service profiles to all the other network devices by broadcasting them on the network. When a device connects to the network newly, it can get all service profiles in the network and it gets service profiles newly pushed by service providers in prompt. Also it can call any service among the service profiles within itself. We implemented a prototype system for the service push model on the JXTA platform based on P2P network. Also we measured the service profile pushing delay, the service discovery time, and the response time of service execution by running test applications written on the prototype system.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Ocean bottom reverberation and its statistical characteristics in the East Sea (동해 해역에서 해저면 잔향음 및 통계적 특징)

  • Jung, Young-Cheol;Lee, Keun-Hwa;Seong, Woojae;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.82-95
    • /
    • 2019
  • In this study, we analyzed the beam time series of ocean reverberation which was conducted in the eastsouthern region of East Sea, Korea during the August, 2015. The reverberation data was gathered by moving research vessel towing LFM (Linear Frequency Modulation) source and triplet receiver array. After signal processing, we analyzed the variation of ocean reverberation level according to the seafloor bathymetry, source/receiver depth and sound speed profile. In addition, we used the normalized data by using cell averaging algorithm and identified the statistical characteristics of seafloor scatterer by using moment estimation method and estimated shape parameter. Also, we analyzed the coincidence of data with Rayleigh and K-distribution probability by Kolmogorov-Smirnov test. The results show that there is range dependency of reverberation according to the bathymetry and also that the time delay and the intensity level change depend on the depths of source and receiver. In addition, we observed that statistical characteristics of similar Rayleigh probability distribution in the ocean reverberation.

Temporal characterization of femtosecond laser pulses using spectral phase interferometry for direct electric-field reconstuction (주파수 위상 간섭계를 이용한 펨토초 레이저 펄스의 시간적 특성연구)

  • 강용훈;홍경한;남창희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • Spectral phase interferometry for direct electric-field reconstruction (SPIDER) was fabricated and used to characterize pulses from a Ti:sapphire oscillator. In the SPIDER apparatus, two replicas of the input pulse were generated with a time delay of 200 fs and were upconverted by use of sum-frequency generation with a strongly chirped pulse using a 8-cm-long SFIO glass block at a 30-11m-thick type II BBO (p-BaBz04) crystal. The resulting interferogram was recorded with a UV-enhanced CCD array in the spectrometer. The spectral phase was retrieved by SPIDER algorithm in combination with independently measured pulse spectrum and the corresponding temporal intensity profile was reconstructed with a duration of 19 fs. As an independent cross-check of the accuracy of the method, we compared the interferometric autocorrelation (lAC) signal calculated from the SPIDER data with a separately measured lAC. The conventional, but unjustified, method of fitting a sechz pulse to the autocorrelation deceivingly yielded a pulse duration of 15 fs. This systematic underestimation of the pulse duration affirms the need for a complete characterization method. From the consideration in this paper, we concluded that the SPIDER could provide an accurate characterization of femtosecond pulses. ulses.

  • PDF

An Improved Symbol Offset Estimation Technique in OFDM-based Wireless LANs (OFDM 기반 무선 LAN에서의 개선된 심볼옵셋 추정기법)

  • Jeon, Won-Gi;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1B
    • /
    • pp.66-78
    • /
    • 2002
  • In this paper, we propose a new symbol offset estimation technique for an orthogonal frequency-division multiplexing (OFDM)-based wireless LAN. When both inter-symbol interference (ISI) and inter-channel interference (ICI) do not exist in an OFDM symbol, symbol offsets cause circular shifts in the estimated channel impulse response (CIR) by the amount of symbol offset. Also, the power delay profile of a typical multipath wireless channel can be modeled by exponentially decaying function, and most energy of multipath channel is concentrated at the beginning part of the CIR. Based on these properties, the proposed symbol offset estimation technique estimates the CIR, which is circularly shifted by the amount of symbol offset, and then calculates the partial mean power from the estimated impulse response by using a moving window with a finite length. And, symbol offset can be estimated from the index of a moving window having the maximal partial mean power. The proposed technique can reduce noise effect in the process of the CIR estimation, and remove ISI and ICI using repetitive training symbol structure in time-domain for minimum training overhead. The performances of the proposed symbol offset estimation technique in typical indoor channels are demonstrated by computer simulation.

Wall Shear Stress Between Compliant Plates Under Oscillatory Flow Conditions: Influence of Wall Motion, Impedance Phase Angle and Non-Newtonian Fluid (맥동유동하에 있는 유연성 있는 평판 사이의 벽면전단응력: 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choe, Ju-Hwan;Lee, Jong-Seon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.18-28
    • /
    • 2001
  • The present study investigates flow dynamics between two dimensional compliant plates under sinusoidal flow conditions in order to understand influence of wall motion, impedance phase angle (time delay between pressure and flow waveforms), and non-Newtonian fluid on wall shear stress using computational fluid dynamics. The results showed that wall motion induced additional terms in the streamwise velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. The trend of the changes was very different depending on the impedance phase angle. As the impedance phase angle was changed to more negative values, the mean wall shear stress decreased while the amplitude of wall shear stress increased. As the phase angle was reduced from 0°to -90°under $\pm$4% wall motion, the mean wall shear stress decreased by 12% and the amplitude of wall shear stress increased by 9%. Therefore, for hypertensive patients who have large negative phase angles, the ratio of amplitude and mean of the wall shear stress is raised resulting in a more vulnerable state to atherosclerosis according to the low and oscillatory shear stress theory. We also found that non-Newtonian characteristics of the blood protect atherosclerosis by decreasing the oscillatory shear index.

Fabrication, Mesurement and Evaluation of Silicon-Gate n-well CMOS Devices (실리콘 게이트 n-well CMOS 소자의 제작, 측정 및 평가)

  • Ryu, Jong-Seon;Kim, Gwang-Su;Kim, Bo-U
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.46-54
    • /
    • 1984
  • A silicon-gate n-well CMOS process with 3 $\mu$m gate length was developed and its possibility for the applications was discussed,. Threshold voltage was easily controlled by ion implantation and 3-$\mu$m gate length with 650 $\AA$ oxide shows ignorable short channel effect. Large value of Al-n+ contact resistance is one of the problems in fabrications of VLSI circuits. Transfer characteristics of CMOS inverter is fairly good and the propagation delay time per stage in ring oscillator with layout of (W/L) PMOS /(W/L) NMOS =(10/5)/(5/5) is about 3.4 nsec. catch-up occurs on substrate current of 3-5 mA in this process and critically dependent on the well doping density and nt-source to n-well space. Therefore, research, more on latch-up characteristics as a function of n-well profile and design rule, especially n+-source to n-well space, is required.

  • PDF

Performance Analysis of Asynchronous OFDMA Uplink Systems with Timing Misalignments over Frequency-selective Fading Channels (주파수 선택적 페이딩 채널에서 시간오차에 의한 비동기 OFDMA 상향 시스템의 성능 분석)

  • Park, Myong-Hee;Ko, Kyun-Byoung;Park, Byung-Joon;Lee, Young-Il;Hong, Dae-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.34-42
    • /
    • 2005
  • In orthogonal frequency-division multiple access (OFDMA) uplink environments, asynchronously received signals can cause multiple access interference (MAI). This paper focuses on the performance degradation due to the MAI over frequency-selective fading channels. We first introduce the timing misalignment, which is defined as the relative timing difference between asynchronous timing error of uplink user and reference time of the base station, and analytically derive the MAI using the power delay profile of wide-sense stationary uncorrelated scattering (WSSUS) channel model. Then, the effective signal-to-noise ratio (SNR) and the average symbol error probability (SEP) are derived. The proposed analytical results are verified through simulations with respect to the region of the timing misalignment and the number of asynchronous users.

Research on the magnetic confinement of laser-induced plasma (레이저 유도 플라즈마에 대한 자기장 감금의 영향 연구)

  • Eunjoo Hyeon;Yong H. Ghym
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2024
  • Most previous works about magnetic effect on plasma emission were interested in emission enhancement which was useful to various fields of plasma application. On the contrary, the following work is interested in plasma dissipation rarely reported in prior researches and expected to help advance plasma-controlling technique. Nd:YAG laser (1064 nm, 6 ns) was focused on three kinds of metals (Al, Ti and STS) and air. The permanent magnetic field (0.4 T) of Nd2Fe14B magnet was provided passing throughout laser-induced plasma. The spectra of plasma in both the presence and absence of the magnetic field were observed with varying laser power and delay time of the spectrograph. In this work it was uniquely discovered that the plasma always dissipated easily in the presence of magnetic field irrespective of the laser power. With the O I(777.42 nm)-line shape function fitted to Lorentz profile, its half width at half maximum (HWHM) was evaluated to verify that the magnetic field increased the plasma density. It is concluded that magnetic field facilitates not only plasma emission enhancement but also plasma dissipation, increasing recombination rate which is proportional to plasma density.