• Title/Summary/Keyword: Time Delay Estimator

Search Result 50, Processing Time 0.021 seconds

Delay-Constrained Bottleneck Location Estimator and Its Application to Scalable Multicasting

  • Kim, Sang-Bum;Youn, Chan-Hyun
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2000
  • Designing a reliable multicast-based network that scales to the size of a multicast group member is difficult because of the diversity of user demands. The loss inferences of internal nodes by end-to-end measurements do not require the use of complete statistics because of the use of maximum likelihood estimation. These schemes are very efficient and the inferred value converges fast to its true value. In the theoretical analysis, internal delay estimation is possible but the analysis is very complex due to the continuity property of the delay. In this paper, we propose the use of a bottleneck location estimator. This can overcome the analytical difficulty of the delay estimation using the power spectrum of the packet interarrival time as the performance metric. Both theoretical analysis and simulation results show that the proposed scheme can be used for bottleneck location inference of internal links in scalable multicasting.

  • PDF

H State Estimation of Static Delayed Neural Networks with Non-fragile Sampled-data Control (비결함 샘플 데이타 제어를 가지는 정적 지연 뉴럴 네트웍의 강인 상태추정)

  • Liu, Yajuan;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.171-178
    • /
    • 2017
  • This paper studies the state estimation problem for static neural networks with time-varying delay. Unlike other studies, the controller scheme, which involves time-varying sampling and uncertainties, is first employed to design the state estimator for delayed static neural networks. Based on Lyapunov functional approach and linear matrix inequality technique, the non-fragile sampled-data estimator is designed such that the resulting estimation error system is globally asymptotically stable with $H_{\infty}$ performance. Finally, the effectiveness of the developed results is demonstrated by a numerical example.

Predictive Control of Bilateral Teleoperation with Short Time Delay (시간 지연이 있는 양방향 원격제어 시스템의 예측 제어)

  • Im, Heung-Jae;Chung, Wan-Kyun;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.295-304
    • /
    • 2000
  • In the teleoperation system, force and velocity signals are communicated between a master and a slave robot. The addition of force feedback to a teleoperation system benefits the operator by providing more information to perform given tasks especially for tasks requiring contact with environment. When the master and slave arms are located in different places, time delay is unavoidable and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The control scheme proposed in this paper is based on the estimator with virtual master model. Delayed signal from the master robot can be replaced by the estimated signal with the virtual master model. This control scheme makes the teleoperation system stable for the given time delay while the conventional scheme is not. This new control scheme is verified through numerical simulations and an experiments using the dual axis testbed of the teleoperation system.

  • PDF

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

Design of Robust Controller and Virtual Model of Remote Control System using LQG/LTR (LQG/LTR 기법을 적용한 원격제어시스템의 가상모델과 강건제어기의 설계)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.193-198
    • /
    • 2022
  • In this paper, we introduce the improved control method are communicated between a master and a slave robot in the teleoperation systems. When the master and slave robots are located in different places, time delay is unavoidable under the network environment and it is well known that the system can become unstable when even a small time delay exists in the communication channel. The time delay may cause instability in teleoperation systems especially if those systems include haptic feedback. This paper presents a control scheme based on the estimator with virtual master model in teleoperation systems over the network. As the behavior of virtual model is tracking the one of master model, the operator can control real master robot by manipulating the virtual robot. And LQG/LTR scheme was adopted for the compensation of un-modeled dynamics. The approach is based on virtual master model, which has been implemented on a robot over the network. Its performance is verified by the computer simulation and the experiment.

How to Measure Nonlinear Dependence in Hydrologic Time Series (시계열 수문자료의 비선형 상관관계)

  • Mun, Yeong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.641-648
    • /
    • 1997
  • Mutual information is useful for analyzing nonlinear dependence in time series in much the same way as correlation is used to characterize linear dependence. We use multivariate kernel density estimators for the estimation of mutual information at different time lags for single and multiple time series. This approach is tested on a variety of hydrologic data sets, and suggested an appropriate delay time $ au$ at which the mutual information is almost zerothen multi-dimensional phase portraits could be constructed from measurements of a single scalar time series.

  • PDF

A model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.437-454
    • /
    • 2023
  • Real-time hybrid simulation (RTHS), which has the advantages of a substructure pseudo-dynamic test, is widely used to investigate the rate-dependent mechanical response of structures under earthquake excitation. However, time delay in RTHS can cause inaccurate results and experimental instabilities. Thus, this study proposes a model-based adaptive control strategy using a Kalman filter (KF) to minimize the time delay and improve RTHS stability and accuracy. In this method, the adaptive control strategy consists of three parts-a feedforward controller based on the discrete inverse model of a servohydraulic actuator and physical specimen, a parameter estimator using the KF, and a feedback controller. The KF with the feedforward controller can significantly reduce the variable time delay due to its fast convergence and high sensitivity to the error between the desired displacement and the measured one. The feedback control can remedy the residual time delay and minimize the method's dependence on the inverse model, thereby improving the robustness of the proposed control method. The tracking performance and parametric studies are conducted using the benchmark problem in RTHS. The results reveal that better tracking performance can be obtained, and the KF's initial settings have limited influence on the proposed strategy. Virtual RTHSs are conducted with linear and nonlinear physical substructures, respectively, and the results indicate brilliant tracking performance and superb robustness of the proposed method.

Adaptive Complex Interpolator for Channel Estimation in Pilot-Aided OFDM System

  • Liu, Guanghui;Zeng, Liaoyuan;Li, Hongliang;Xu, Linfeng;Wang, Zhengning
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.496-503
    • /
    • 2013
  • In an orthogonal frequency division multiplexing system, conventional interpolation techniques cannot correctly balance performance and overhead when estimating dynamic long-delay channels in single frequency networks (SFNs). In this study, classical filter analysis and design methods are employed to derive a complex interpolator for maximizing the resistible echo delay in a channel estimator on the basis of the correlation between frequency domain interpolating and time domain windowing. The coefficient computation of the complex interpolator requires a key parameter, i.e., channel length, which is obtained in the frequency domain with a tentative estimation scheme having low implementation complexity. The proposed complex adaptive interpolator is verified in a simulated digital video broadcasting for terrestrial/handheld receiver. The simulation results indicate that the designed channel estimator can not only handle SFN echoes with more than $200{\mu}s$ delay but also achieve a bit-error rate performance close to the optimum minimum mean square error method, which significantly outperforms conventional channel estimation methods, while preserving a low implementation cost in a short-delay channel.

Servo Design for High-TPI Hard Disk Drives Using a Delay-Accommodating State Estimator

  • Kim, Young-Hoon;Chu, Sang-Hoon;Kang, S.W.;Oh, D.H.;Han, Y.S.;Hwang, T.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.134-139
    • /
    • 2002
  • This paper presents a servo design method for high track-density hard disk drives, in which the plant time delay, mainly due to the processor computation time, is taken into account. The key idea behind the proposed design method is to incorporate the delay model into the output equation of the state-space representation for the plant model; thereby, the delay is accounted for by a standard state observer in a natural manner, with simplified state equations as compared to those for conventional methods. The results from practical application confirm that the proposed method is quite effective in realizing a high-bandwidth servo system in hard disk drives.

  • PDF

Channel Transfer Function estimation based on Delay and Doppler Profiler for 5G System Receiver targeting 500km/h linear motor car

  • Suguru Kuniyoshi;Shiho Oshiro;Gennan Hayashi;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.121-127
    • /
    • 2023
  • A 500 km/h linear motor high speed terrestrial transportation service is planned to launch 2027 in Japan. In order to support 5G service in the train, the Sub-carrier spacing frequency of 30 kHz is planned to be used instead of common 15 kHz sub-carrier spacing to mitigate Doppler effect in such high-speed transportation. In addition, to increase the cell size of 5G mobile system, plural Base Station antenna will transmit the identical Down Link (DL) signal to form the expanded cell size along the train rail. In this situation, forward and backward antenna signals will be Doppler shifted by reverse direction respectively and the receiver in the train might suffer to estimate accurate Channel Transfer Function (CTF) for its demodulation. In this paper, Delay and Doppler Profiler (DDP) based Channel Estimator is proposed and it is successfully implemented in signal processing simulation system. Then the simulated performances are compared with the conventional Time domain linear interpolated estimator. According to the simulation results, QPSK modulation can be used even under severe channel condition such as 500 km/h, 2 path reverse Doppler Shift condition, although QPSK modulation can be used less than 200 km/h with conventional Channel estimator.