• Title/Summary/Keyword: Time Delay Controller

Search Result 732, Processing Time 0.03 seconds

A Study on the Design Method of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 설계방법 고찰)

  • 김성열;이금원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.326-326
    • /
    • 2000
  • Continuous time system deadbeat controller(CdbC) has been studied mainly since 1992 especially by Japan researchers. They suggested delay elements. These elements stem from the finite Laplace Transform which is the starting point in deadbeat control system design in continuous time system. Every transfer function is established by these elements. From some conditions such as internal model stability and peasibility of a CdbC controller. unknown polynomials or coefficients can be calculated. In this paper, optimal pole placement of the closed loop system is suggested. From this. a CdbC controller with lower order can be obtained which attains the same level of weighted sensitivity function's H$_{\infty}$ norm used as a measure of the robustness property as existing CdbCs.

  • PDF

Robust $H_\infty$ Output Feedback Control of Descriptor Systems with Parameter Uncertainty and Time dDelay (파라미터 불확실성과 시간지연을 가지는 특이시스템의 견실 $H_\infty$ 출력궤환 제어)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.9-16
    • /
    • 2004
  • This paper provides an observer-based Η$\infty$ output feedback controller design method for descriptor systems with time-varying delay by just one LMI(linear matrix inequality) condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI approach which can be solved efficiently by convex optimization. The design procedure involves solving an LMI. Since the obtained condition can be expressed as an LMI form all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement changes of variables, and singular value decomposition. Moreover, The proposed controller design algorithm can be extended to the observer-based robust Η$\infty$ output feedback controller design method for descriptor systems with parameter uncertainty and time delay. An example is given to illustrate the results.

Lateral vibration control of a low-speed maglev vehicle in cross winds

  • Yau, J.D.
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-283
    • /
    • 2012
  • This paper presents a framework of nonlinear dynamic analysis of a low-speed moving maglev (magnetically levitated) vehicle subjected to cross winds and controlled using a clipped-LQR actuator with time delay compensation. A four degrees-of-freedom (4-DOFs) maglev-vehicle equipped with an onboard PID (Proportional-Integral-Derivative) controller traveling over guideway girders was developed to regulate the electric current and control voltage. With this maglev-vehicle/guideway model, dynamic interaction analysis of a low-speed maglev vehicle with guideway girders was conducted using an iterative approach. Considering the time-delay issue of unsynchronized tuning forces in control process, a clipped-LQR actuator with time-delay compensation is developed to improve control effectiveness of lateral vibration of the running maglev vehicle in cross winds. Numerical simulations demonstrate that although the lateral response of the maglev vehicle moving in cross winds would be amplified significantly, the present clipped-LQR controller exhibits its control performance in suppressing the lateral vibration of the vehicle.

Improved Performance of the Time-Delay Systems Using the Approximated End-Order Plus Dead Time Model (근사화된 2계 모델을 이용한 시간지연을 갖는 제어시스템의 성능개선)

  • Lee, Kyu-Yong;Yang, Seung-Hyun;Hur, Myung-Joon;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.518-520
    • /
    • 1999
  • The practical control problems for the time-delay system is considered. The delay-free characteristics of the Smith Predictor is available only when both the process and it's model are exactly matched. So it does not used widely in practical industrial processes. In this paper, using the 2nd-order plus deadtime model in place of the plant model of the Smith predictor, the proposed controller shows the improved performance in case of the very long time delay. And the range of integral constant of the PI controller is also proposed.

  • PDF

Robust Reliable H$\infty$ a Control of Continuous/Discrete Uncertain Time Delay Systems using LMI

  • Kim, Jong-Hae;Park, Hong-Bae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-127
    • /
    • 1999
  • In this paper, we present robust reliable H$\infty$ controller design methods of continuous and discrete uncertain time delay systems using LMI (linear matrix inequality) technique, respectively. Also the existence conditions of state feedback control are proposed . Using some changes of variables and Schur complements, the obtained sufficient conditions are transformed into an LMI form. The closed loop system by the obtained controller is quadratically stable with H$\infty$ norm bound for all admissible uncertainties, time delay, and all actuator failures occurred within the prespecified set. We show the validity of the proposed method through numerical example.

  • PDF

Networked Nonlinear Control Systems with Time-Delay via T-S Fuzzy Approach (시간 지연을 포함하는 비선형 네트워크 시스템의 퍼지 제어)

  • Song, Min-Kook;Park, Jin-Bae;Joo, Young-Hoon;Kim, Jong-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.390-392
    • /
    • 2009
  • This paper is concerned with the stabilization problem of nonlinear networked control systems with time-delay via Takagi-Sugeno(T-S) fuzzy control approach. The T-S fuzzy models are employed to represent nonlinear systems with Markovian jump parameters and time-delay. The purpose of this paper is to design a fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. Based on a stocastic Lyapunov function, stabilization sufficient conditions using a mode-independent fuzzy controller are derived for the Markovian jump fuzzy system in terms of Linear Matrix Inequalities(LMIs). Finally, a simulation example is presented to illustrate the effectiveness of the proposed method.

  • PDF

Networked Nonlinear Control Systems with Time-Delay via T-S Fuzzy Approach (시간 지연을 포함하는 비선형 네트워크 시스템의 퍼지 제어)

  • Song, Min-Kook;Park, Jin-Bae;Kim, Jin-Kyu;Joo, Young-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.329-331
    • /
    • 2009
  • This paper is concerned with the stabilization problem of nonlinear networked control systems with time-delay via Takagi-Sugeno(T-S) fuzzy control approach. The T-S fuzzy models are employed to represent nonlinear systems with Markovian jump parameters and time-delay. The purpose of this paper is to design a fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. Based on a stocastic Lyapunov function, stabilization sufficient conditions using a mode-independent fuzzy controller are derived for the Markovian jump fuzzy system in terms of Linear Matrix Inequalities(LMIs). Finally, a simulation example is presented to illustrate the effectiveness of the proposed method.

  • PDF

Time-Delay Control for Integrated Missile Guidance and Control

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • In this paper, integrated missile guidance and control systems using time-delay control (TDC) are developed. The next generation missile requires that an interceptor hits the target, maneuvering with small miss-distances, and has lower weight to reduce costs. This is possible if the synergism existing between the guidance and control subsystems is exploited by the integrated controller. The TDC law is a robust control technique for nonlinear systems, and it has a very simple structure. The feature of TDC is to directly estimate the unknown dynamics and the unexpected disturbance using one-step time-delay. To investigate the performance of the integrated controller, numerical simulations are performed as the maneuver of the target. The results show that the integrated guidance and control system has a good performance.

Automatic Diameter Control System with Long Time-Delay for Crystal Grower (FF - CZ150) (긴 시간지연을 갖는 단결정 실리콘 성장기(Crystal Grower - FF CZ150)의 자동 직경 제어 시스템)

  • Park, Jong-Sik;Kim, Jong-Hun;Yang, Seung-Hyun;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2089-2092
    • /
    • 2002
  • The PID controller have the simple structure and show the comparatively good control performance. Crystal Grower(FF-CZ150) melt polycrystalline silicon at the temperature of about 1450$^{\circ}C$, then grow it into a single crystalline ingot. The automatic diameter control system of the Crystal Grower has a good performance with only PD control. But it contain the integrator in the plant which has a long time delay. In this paper, we show the secondary approximate model and applies time delay controller which has good performance for the plant with long time delay. It will be able to improve the response characteristic against a standard input and a load disturbance.

  • PDF

A Study on Robust Control of DC Servo Motor Using Time Delay Control and Observer/Controller Stabilization (시간지연 제어기법을 이용한 DC서보모터 강인제어 및 관측기/제어기 안정화에 관한 연구)

  • 이정완;장평훈;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1029-1040
    • /
    • 1993
  • Recently the Time Delay Control (TDC) method has been proposed as a promising technique in the robust control area, where the plants have nonlinear dynamics with parameter variations and substantial disturbances are present. TDC method, however, requires the measurements of all the state variables, together with their derivatives. This requirement imposes a severe limitation on the applications to most real systems. In order to solve this measurement problem, we proposed an observer design method that can stably reconstruct the state variables and their derivatives. the stability of the overall system has been analyzed and proved. Then, for a simulation study, the controller/observer based on our design method has been applied to a nonlinear plant, the result of which confirmed that the controller/observer performs satisfactorily as predicted, Finally we made experimentations on a DC servo motor that is substantial amount of inertia variations and external disturbances. the results showed that the controller/observer performs quite robustly under those variations and disturbances, and is much less sensitive to sensor noise than the controller using numerical differentiations.