• 제목/요약/키워드: Time Delay Control with Internal Model(TDCIM)

검색결과 2건 처리시간 0.015초

이산 TDCIM과 이산 PID 제어기 사이의 관계 규명 (Identification of the Relationship Between the Discrete TDCIM and the Discrete PID Controller)

  • 박상현;정의인;신동관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.23-28
    • /
    • 2017
  • Time-delay control with internal model (TDCIM) is the controller for robot manipulators that applies the time-delay estimation and the concept of internal model control (IMC). TDCIM is robust against unknown dynamics and non-linear friction like coulomb friction and static friction. It is simple and computationally efficient. This study presents the relationship between the discrete TDCIM and the discrete PID controller. The PID controller is the most popular control law in the real application. But often the PID controller can be difficult to achieve the desired level of control performance. The result in this study provides a good candidate solution to these situations.

로봇 매니퓰레이터를 위한 시간지연추정과 내부모델개념을 결합한 강인제어기에 관한 연구 (Robust Trajectory Control of Robot Manipulators Using Time Delay Estimation and Internal Model Concept)

  • 조건래;장평훈;정제형
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1075-1086
    • /
    • 2004
  • In this paper, Time Delay Control(TDC) for robot manipulators is analyzed and its problems are founded. In order to remedy the problems, the enhanced controller is proposed and analyzed. The effect of friction associated with TDC is reported and its cause is presented. Through the analysis, simulation and experiment, it is shown that the friction effect causes serious degradation in control performance and that it is a result of the error of Time Delay Estimation(TDE) in TDC. In order to remedy the problems, TDC combined with Internal Model Control(IMC) concept is proposed. The proposed compensator is effective enough to handle the bad effect of friction, and is so simple and efficient as to match positive attribute of TDC. The simulation and experimental results show the effectiveness of proposed controller against the friction of the robot manipulators.