• Title/Summary/Keyword: Timber

Search Result 873, Processing Time 0.025 seconds

Improvement of Fire Resistance for Timber Framed Walls by Reinforcement of Heavy Timber Frame

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Kim, Kwang-Mo
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.6
    • /
    • pp.469-478
    • /
    • 2010
  • Fire resistance of new hybrid timber framed wall systems was evaluated in this study. These wall systems are composed of two major structural parts. One part is a heavy timber frame part designed to take charge of whole vertical load using heavy timber post and beam, and the other is an infill wall structure, designed to take charge of whole horizontal load and to provide an established level of fire resistance. A basic concept of this hybrid wall is adopted from a typical furniture structure with frame. A timber post and beam frame is constructed with Japanese Larch solid timber post(180mm by 180mm) and beam(180mm by 240mm). As infill wall systems, two types of walls are applied. One is a typical light timber framed wall with solid blocking and another is a structural insulated panel wall, in which polystyrene insulation is filled between two structural panels to make single structure. For all tested walls, two layers of 12.5mm thick type-X gypsum boards are used on fire exposed side. Prior to tests for hybrid walls, only infill walls are tested without heavy timber frame. All fire resistance tests are carried out in accordance with KS F 2257, and temperatures on several points within wall structure and unexposed wall surface are measured during fire tests. It is considered that the reinforcement of heavy timber frame is significantly efficient for improving the fire resistance of timber framed walls.

  • PDF

Optimal Maintenance Decisions for Power Supply Timber Poles

  • G., Chattopadhyay;A., Rahman
    • International Journal of Reliability and Applications
    • /
    • v.5 no.4
    • /
    • pp.115-128
    • /
    • 2004
  • Reliability of a power supply timber pole depends on complex combination of age, environmental factors involved in deterioration process ans inspection and maintenance actions influencing reliability and safety. In this paper soil and human factors are identified, models have been developed and analyzed for optimal maintenence decisions related to electrical power supply timber poles.

  • PDF

A Study of the Supply of Large Korean Pine Timber (국산 육송 특대재 수급 현황 분석 및 문화재 수리의 활용에 관한 연구)

  • Jung, Younghun;Yun, Hyundo
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.136-149
    • /
    • 2020
  • It is generally believed that Douglas Fir timber imported from North America is used in repair work for Korean wooden heritage sites due to an insufficient supply of extra-large sized Korean pine timber. Based on this understanding in the cultural heritage repair field, Cultural Heritage Repair Business Entities ("CHRBE") prefer North American Douglas Fir timber which is more easily acquired on the market than large Korean pine timber. However, if CHRBE use large quantities of foreign-origin wood in the heritage repair field, this presents the threat of negative domestic impacts on cultural heritage such as breaching the preservation principal and ultimately weakening material authenticity. Therefore, this study aims to investigate the current supply status of large Korean pine timber through examination of existing research, interviews with experts engaged in CHRBE, and timber mills. With this information, the authors seek to identify whether the market supply of large Korean pine timber is indeed insufficient or not. In addition to this, this paper identifies the reasons why large Korean pine timber is not widely used if such timber supply is actually sufficient. In order to propose suggestions regarding the issues above, the authors study the distribution channel for large Korean pine timber and the price spectrum of this timber through examination of price information from the public agencies under the Korea Forest Service, research papers from the Cultural Heritage Administration, and estimation documents from timber mills. This paper also identifies two main opinions about why Korean timber has not been commonly used in the Korean heritage repair field. The first opinion is that the supply of large Korean pine timber really is insufficient in Korea. However, the second opinion is that it is hardly used due to inappropriateness of the government's procurement and estimation system, despite the fact that the supply of the timbers on the market is actually sufficient. Through the aforementioned research, this paper comes to the conclusion that the second opinion has strong grounds in many aspects. In terms of suggestions, alternative routes are proposed to stimulate the use of large Korean pine timber via supply by the 'Korea Foundation for Traditional Architecture and Technology' and surveys of the price spectrum of the timber, etc.

An Analysis on the Situation of Forestry Mechanization in the Production and Supply of Timber (목재생산 및 공급에서 임업기계화의 현황 분석)

  • Kim, Jae-Hwan;Mun, Ho-Seong;Han, Sang-Yoel;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.607-614
    • /
    • 2015
  • This study aims to analyze the current status of timber production operation and the effects of the forestry mechanization projects on timber production. In order to increase the domestic timber production, it is necessary to propel forestry mechanization project, improve policy and institution, broaden forest-road network, enlarge the number of forest workers, enhance timber production and supply system, provide forestry machines, establish forest operation system, and train forest workers. In addition, the reestablishment of policy goals, the consistency of policy, and the rearrangement of laws and institution are considered more important. To improve the results and effects of forestry mechanization project, it is necessary to drive of forestry mechanization project, the spread of forestry machines, the cultivation of trainer ability, the development of training materials, and the teaching of field skill. In order to meet timber buyersí preference, timber needs to be produced through whole tree logging operation system. Expanding the proportion of domestic timber among total timber demand in Korea requires price competitiveness, and the supply ability of high quality product from the perspective of length and width.

Physical and Mechanical Properties of Cross Laminated Timber Using Plywood as Core Layer (합판을 코어로 사용한 교호 집성재의 물리·기계적 성질)

  • Choi, Chul;Yuk, Cho-Rong;Yoo, Ji-Chang;Park, Jae-Young;Lee, Chang-Goo;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • This study was performed to study physical and mechanical properties of hybrid cross laminated timber (HCLT) with plywood as core layer in order to improve its mechanical properties for wooden housing. MOE, MOR, and dimensional stability of the HCLT were determined, depending on plywood composition and lamination direction. MOR value of the HCLT was improved as much as that of the glued laminated timber, which was 59.6% stronger than that of the cross laminated timber (CLT) control group. All MOE values of the HCLT were similar to glued laminated timber structure control group regardless of plywood composition and lamination directions. The dimensional stability of the HCLT was better than those of the glued laminated timber and CLT control group, owing to the use of plywood in the core.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

A Study on Improvement of Maintenance System for Timber Sleepers of Ballast-less track on Railway Bridge (무도상 강철도 교량상 목침목 유지관리체계 개선방안에 관한 연구)

  • Choi, Jung-Youl;Shin, Tae-Hyoung;Kim, Sang-Jin;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.389-394
    • /
    • 2019
  • In case of damaged timber sleepers, maintenance is carried out according to the track inspection standard. However, it is difficult to detect the extent of damage on the bridge, and maintenance is depended on inspector's judgment. In this study, we propose to improve the evaluation criterion of timber sleepers for the ballast-less tracks on serviced urban railway bridge. The timber sleepers on railway bridge was classified according to degree of damage, and damage scores were calculated for each damage grade. Also we have improved the maintenance system of the timber sleepers through the history management system of the individual timber sleepers on railway bridge. As a results, it was judged that systematic management of timber sleepers could be possible during maintenance.

A finite element model for long-term analysis of timber-concrete composite beams

  • Fragiacomo, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.173-189
    • /
    • 2005
  • The paper presents a finite element model for studying timber-concrete composite beams under long-term loading. Both deformability of connection system and rheological behaviour of concrete, timber and connection are fully considered. The creep of component materials and the influence of moisture content on the creep of timber and connection, the so-called "mechano-sorptive" effect, are evaluated by means of accurate linear models. The solution is obtained by applying an effective step-by-step procedure in time, which does not require storing the whole stress history in some points in order to account for the creep behaviour. Hence the proposed method is suitable for analyses of composite beams subjected to complex loading and thermo-hygrometric histories. The possibility to accurately predict the long-term response is then shown by comparing numerical and experimental results for different tests.

Rational designing of double-sided nail plate joints using the finite element method

  • Zhou, Tinozivashe;Guan, Z.W.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.239-257
    • /
    • 2008
  • Double-sided punched metal plate timber fasteners present projections on both sides, which offer improved joint fire resistance and better joint aesthetics. In this paper, 3-D nonlinear finite element models were developed to simulate double-sided nail plate fastener timber joints. The models, incorporating orthotropic elasticity, Hill's yield criterion and elasto-plasticity and contact algorithms, are capable of simulating complex contact between the tooth and the timber and between the base plate and the timber in a fastener. Using validated models, parametric studies of the double-sided nail plate joints was undertaken to cover the tooth length and the tooth width. Optimal configuration was assumed to have been attained when increase in nail plate tooth width did not result in a raise in joint capacity, in conjunction with the optimum tooth length. This paper presents the first attempt to model and optimise tooth profile of double-sided nail plate fastener timber joints, which offers rational designs of such fasteners.

A Study on the Relative Importance of Quality Management Items through the Defect Analysis in the Landscape Construction Process (조경시설공사의 시공품질 분석을 통한 품질관리항목의 중요도 연구)

  • 이상석;최기수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 1997
  • This study aims to estimate the relative importance of quality management items through the defect analysis in the landscape construction process. The RIQMI are decided by the defect coefficient and it's cause weight. The defect items in the landscape construction process were classified by 56 items based on the classification form of '96 landscape architectural construction standard and the cause pattern were categorized 4 types as design, material, construction, and environment factors. To analyze the defect coefficient and the aucse weight by defect, the researcher surveyed the questionnaires on the 103 engineers and the 31 experts on the landscape architectural construction. The result of this study are as follows. The relative importance by facilities pattern turn out to be much higher construction, material fator than design. environment factor in wood facilities, paving facilities, and steel facilities, the RIQMI is very high in timber crack, timber vending, faulty of timber against decay, welding faulty of steel facilities in material factor, and timber crack, faulty of timber against decay, finish faulty of steel facilities, welding faulty of steel facilities in construction factor.

  • PDF