• Title/Summary/Keyword: Tilting-train

Search Result 345, Processing Time 0.029 seconds

A Study on Material Selection of the Carbody Structure of Korean Tilting Train eXpress(TTX) (한국형 고속 틸팅열차(TTX)의 차체 재질 선정 연구)

  • Shin, Kwang-Bok;Koo, Dong-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.462-467
    • /
    • 2004
  • In order to determine the most suitable material system which can achieve the lightweight design and fulfill the design requirements of carbody structures of Korean Tilting Train eXpress (TTX), aluminum carbody, composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in present study. The finite-element analysis was used to verity the design requirements of the TTX carbody structures with the material system being considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were checked as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity when compared to aluminum and composite carbody structures.

  • PDF

Creepage Model Analysis for a Tilting Train (틸팅열차의 크리피지 모델 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2009
  • Traction and braking of trains are due to the rolling contact of the wheel on the rail, and the rolling contact is fundamental to an understanding of the behavior of the railroad system. The way in which the forces are transmitted in the rolling contact is complex and highly nonlinear. This paper describes a rolling contact theory, a creepage model between wheel and rail, and a dynamic model of the tilting train Hanvit-200. The validity of the model is verified through simulation study using Simulink.

The Study of Main Circuit System Design and Testing for EMU Tilting Vechile (틸팅열차 주회로시스템 설계 및 검증기술연구)

  • Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.200-201
    • /
    • 2007
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper show that results of normal capacity calculations of the electrical equipments such as Main transformer, PWM converter, VVVF inverter, traction motor in TTX(tilting train express) with maximum operation speed 180 km/h.

  • PDF

The Study of Main Circuit System Design for EMU Tilting Vechile (틸팅전동차용 주회로시스템 설계에 관한 연구)

  • Han, Seong-Ho;Lee, Su-Gil;Lee, Eun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1604-1606
    • /
    • 2005
  • Tilting train has been developed to increase the operational speed of the trains on conventional lines which have many curves. This train are tilted at curves to compensate for unbalanced carbody centrifugal acceleration to a greater extent than compensation produced by the track cant, so that passengers do not feel centrifugal acceleration and thus trains can run at higher speed at curves. This paper show that results of normal capacity calculations of the electrical equipments such as Main transformer, PWM converter, VVVF inverter, traction motor in TTX(tilting train express) with maximum operation speed 180 km/h

  • PDF

Performance test of complete train of TMS(train control and monitoring system) on Tilting Train (한국형틸팅열차 열차제어진단장치 완성차 성능시험에 관한 연구)

  • Han, Seong-Ho;Lee, Su-Gil;Song, Young-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1201_1202
    • /
    • 2009
  • This paper represents the results of a complete train test of TMS(train control and management system) for korean tilting train express(TTX). This system, installed on TTX is responsible for monitors and controls of various local devices. This kind of test procedure is first time in Korea. So, we made of new standards related on a component test of the TMS and conducted to the complete Component Test and running test on conventional railway. We realized that this device is robust and good performance regarding as communication with other devices and reliability of TMS.

  • PDF

A Study on Performance Evaluation of On-board Electric Device of TTX(Tilting Train Express) (틸팅열차(TTX)의 정장품 성능평가 연구)

  • Han, Seong-Ho;Lee, Su-Gil;Seo, Sung-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.239-242
    • /
    • 2005
  • This paper introduced an approach of improvement of performance of Electric device for EMU type Train like as TTX. The electric equipments are characterized by insulation, Noise, cooling system etc. and Their weight arc decided by these factors. There are two kinds of power source in EMU train. First, DC voltage source, 1500 volt, 750 volt is used for subway system. Second, AC power source 25000 volt is applied to high speed train and existing main lines. Composite material has the protection of inrush current and high frequency noise. We can use this material to minimize weight of train. Additionally we can get energy saving when operator service TTX.

  • PDF

Experimental Study on the Bogie Frame of Tilting Railway Vehicle for Assessment of Structural Safety (한국형 틸팅열차용 주행장치 프레임의 구조적 안전성 평가에 관한 시험적 연구)

  • Kim, Jung-Seok;Kim, Nam-Po;Seo, Sung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.166-173
    • /
    • 2006
  • This paper investigated strength of a bogie frame for Korean tilting train that is being developed in KRRI. In this study, static load tests based on Japanese Industrial Standard (JIS) were performed. In order to simulate vertical and lateral components generated by tilting link mechanism, four hydraulic actuators were used. The eight load cases such as vertical, lateral, traction, braking and driving gear loads were applied for evaluation of the strength of bogie frame. The stresses measured at the stress concentration points were assessed using Goodman diagram. From the experimental results, structural safety of the bogie frame could be ensured.

Evaluation of Speed Limit of Tilting Trains Including Passenger's Comfort in Conventional Line (틸팅특성과 승차감을 고려한 틸팅열차의 곡선부 제한속도 평가)

  • Eum Ki-Young;Um Ju-Hwan;Yeo In-Ho;You Young-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.927-934
    • /
    • 2004
  • For the purpose of speed-up of conventional lines with many curves, the introduction and operation of tilting train is under process. Those are Joong-Ang, Jang-Hang and Ho-nam lines etc. Tilting trains can run a curve section faster than existing trains without a significant violation of passenger's comfort and enable to reduce operating time in the lines with many curves. In this study, the trains speeds are evaluated, based on the alignment of conventional line, criteria for passenger's comfort and investigated field conditions of the sections where the curves exist. Decision on whether the alignment(transition line) needs to be modified or not is also made. Relative efficiency on curve sections of tilting train to existing trains is approximately $50\%$ in average.

  • PDF

Analysis of speed-up effect of the tilting train on the conventional railway line (틸팅차량 운행에 따른 기존선 속도향상 효과 분석)

  • Kim, Kyoung-Tae;Yoo, Jae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.297-304
    • /
    • 2003
  • As the high speed rail to be opened at 2004, the. railroad will dominate over the transportation market in the Seoul-Busan corridor compared to road transport. But, it is obvious that the LOS(level of service) of railroad at 2004 will be worse in the areas that are not served KTX. For the speed-up of conventional line, it is a worldwide trend that tilting trains are served on the conventional railway line. That is the reason serving tilting trains is very efficient to use existing facilities and improve cruise time when capacity is available. In this paper, we suggest 10 routes are replaced with present operating trains(saemaeul, mugunghwa) by the tilting train.

  • PDF