• Title/Summary/Keyword: Tilting Bogie

Search Result 44, Processing Time 0.022 seconds

A study on the Critical speed of Korean Tilting Train Hanbit200 (한국형 틸팅열차 한빛200의 임계속도에 관한 연구)

  • Kim, Nam-Po;Kim, Jung-Seok;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.257-263
    • /
    • 2007
  • The critical speed above which the vehicle become unstable is one of the items that should be verified in the development of a new train. In the case of a high speed tilting train, which requires both higher critical speed and higher curving speed, the critical speed should be more carefully treated because the both requirements are in conflict with each other in the conventional train design. The main purpose of the present work is to estimate the linear and non-linear critical speeds of 200km/h Korean Tilting Train 'Hanbit200' under development. The newly developed self-steering mechanism was attached to the tilting train to ensure that the critical speed falls under the lower yaw stiffness which is needed to secure higher curving performance. The simulation for predicting the critical speed was done by a commercially available vehicle dynamics software. A full scale roller rig test was carried out to validate the numerical results and to verify the effectiveness of the self-steering mechanism.

Safety evaluation of dynamic behavior of Korean tilting train (TTX차량의 동역학적 거동의 안정성 평가)

  • Yoon, Ji-Won;Kim, Nam-Po;Kim, Young-Guk;Kim, Seog-Won;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.194-200
    • /
    • 2007
  • The tilting train is able to tilt its body towards the center of the turning radius, preventing roll-over of the train as it runs on a curved rail at high-speed. This train, widely accepted for commercial purpose internationally is very beneficial in that the operating time is shortened without much capital investment to the infrastructure where there are many curved rails. Over several years, the Korea Railroad Research Institute(KRRI) has developed such a train. In this paper, the safety of the Korean tilting train express(TTX) is investigated using a dynamic simulation model. Since, proper safety standards have not been established for the TTX, those for the Korean train express(KTX) is employed instead to analyze the safety and ride comfort of the TTX. This study will prove useful in predicting the behavior of the TTX and ride comfort, and conforming that designed TTX measures up to the safety standards. It would be useful to recommend proper normal operating speed and determine the maximum safety speed, according to the result. Furthermore, it would be possible to provide basic reference data when analyzing the dynamic effect of the catenary system and the fatigue of the bogie.

  • PDF

Safety evaluation of dynamic behavior of Korean tilting train (TTX차량의 동역학적 거동의 안정성 평가)

  • Yoon, Ji-Won;Kim, Nam-Po;Kim, Young-Guk;Kim, Seog-Won;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.540-545
    • /
    • 2007
  • The tilting train is able to tilt its body towards the center of the turning radius, preventing roll-over of the train as it runs on a curved rail at high-speed. This train, widely accepted for commercial purpose internationally, is very beneficial in that the operating time is shortened without much capital investment to the infrastructure where there are many curved rails. Over several years, the Korea Railroad Research Institute (KRRI) has developed such a train. In this paper, the safety of the Korean tilting train express (TTX) is investigated using a dynamic simulation model. Since proper safety standards have not been established for the TTX, those for the Korean train express (KTX) is employed to analyze the safety and ride comfort of the TTX. This study is useful in predicting the behavior of the TTX and ride comfort, and conforms that designed TTX is stable enough to satisfy the safety standards. It would be useful to recommend proper normal operating speed and determine the maximum safety speed, according to the result. Furthermore, it would be possible to provide basic reference data when analyzing the dynamic effect of the catenary system and the fatigue of the bogie.

Study on Improving the Environmental Performance of a Railway Vehicle through a Life Cycle Assessment of the Tilting Train (틸팅열차의 전과정평가를 통한 철도차량 환경성 개선방안연구)

  • Lee, Cheul Kyu;Kim, Yong-Ki;Lee, Jae-Young;Choi, Yo-Han;Kim, Cho-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Recent international environmental regulations are focused on reducing pre-contamination and on sustainable development prior to the usage stage of a product. The Environmental Performance Declaration is being used as a tool for quantifying the environmental performance of products, to reduce contamination in advance, and for advertising the results of railway vehicles in Europe. In this study, a life cycle assessment of the tilting train was conducted, the first such case study in Korea, according to the ISO 14025 standard and Korea EDP (Environmental Declaration of the Product) rule. As a result of the LCA, the life cycle carbon emission of the tilting train was determined to be $3.54{\times}10^7kgCO_2eq.$ which is higher than that of a European train. Also, the amount of $CO_2$ emission of the Mcp and car body is higher than that of the other car and bogie.