• 제목/요약/키워드: TiltRotor

검색결과 111건 처리시간 0.022초

틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석 (Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles)

  • 김수연;최종욱
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.

틸트로터 항공기 비선형 시뮬레이션 프로그램 개발 (Development of Simulation Program for Tilt Rotor Aircraft)

  • 유창선;최형식;박범진;안성준;강영신
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.193-199
    • /
    • 2005
  • VTOL(Vertical Take-Off and Landing) aircraft is attractive due to the reason that it is not necessary to have long runway. However a rotorcraft has a definite limitation to fly at the high speed due to the stall at the tip of rotor. To solve this problem, tilt rotor, tilt wing and lift fan were researched and developed. It was verified that the tilt rotor aircraft among them was more effective in disk loading. On this basis, the tilt rotor aircraft has been made into XV-15, V-22, BA-609 and Eagle Eye. This paper shows a nonlinear simulation program for general tilt rotor aircraft that was developed in order to validate the flight characteristics of tilt rotor aircraft and verified through the simulation analysis.

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • 공학교육연구
    • /
    • 제17권5호
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

Tilt Rotor-Wing Concept for Multi-Purpose VTOL UAV

  • Hwang, Soo-Jung;Kim, Yu-Shin;Lee, Myeong-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.87-94
    • /
    • 2007
  • Tilt rotor-wing concept to show enhanced performance in low speed mission is presented. Three types of stud wings on the existing tilt rotor configuration are suggested and their characteristics are compared. Aerodynamic analysis indicates that the stud wing concept gives significant performance improvement on the endurance and range in the low speed regime when compared with the tilt rotor. Penalties of the stud wing are discussed from the perspectives of conversion corridor, structural weight, configuration design, and cross wind stability. This study concludes that the advantage of the stud wing in general UAV mission performance is so significant as to surpass the penalties in other perspectives investigated.

틸트로터 항공기의 경로점 추종 비행유도제어 알고리즘 설계 : 헬리콥터 비행모드 (Guidance and Control Algorithm for Waypoint Following of Tilt-Rotor Airplane in Helicopter Flight Mode)

  • 하철근;윤한수
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with an autonomous flight guidance and control algorithm design for TR301 tilt-rotor airplane under development by Korea Aerospace Research Institute for simulation purpose. The objective of this study is to design autonomous flight algorithm in which the tilt-rotor airplane should follow the given waypoints precisely. The approach to this objective in this study is that, first of all, model-based inversion is applied to the highly nonlinear tilt-rotor dynamics, where the tilt-rotor airplane is assumed to fly at helicopter flight mode(nacelle angle=0 deg), and then the control algorithm, based on classical control, is designed to satisfy overall system stabilization and precise waypoint following performance. Especially, model uncertainties due to the tiltrotor model itself and inversion process are adaptively compensated in a simple neural network(Sigma-Phi NN) for performance robustness. The designed algorithm is evaluated in the tilt-rotor nonlinear airplane in helicopter flight mode to analyze the following performance for given waypoints. The simulation results show that the waypoint following responses for this algorithm are satisfactory, and control input responses are within control limits without saturation.

틸트로터 설계특성 및 주요 사이징 변수에 대한 요구

  • 안오성;김재무
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.277-286
    • /
    • 2004
  • 스마트 사업단에서 비행체개념으로 적용하고 있는 틸트로터 형상의 설계 특성 및 주요 사이징 변수에 대해 그간에 선진 항공업체에서 진행된 방대한 연구 결과를 종합적으로 정리하고 다른 수직이착륙 비행체와 대별되는 틸트로터 비행체의 특성을 분석, 정리하였다. 또한 스마트무인기 개발 사업단 자체적으로 수행한 개념설계와 진행중인 기본설계 결과 확인된 틸트로터 비행체 설계의 특성 및 주요 고려사항들을 정리하였다. 이 논문은 틸트로터 비행체 설계특성과 기술적 고려사항에 대한 종합적인 이해를 갖고자 하는 이들에게 큰 도움이 될 것이다.

  • PDF

H 기반 틸트로터 항공기 횡방향 SCAS 설계 (Design of Lateral SCAS based on H for Tilt Rotor Aircraft)

  • 이장호;유창선
    • 항공우주시스템공학회지
    • /
    • 제2권3호
    • /
    • pp.1-6
    • /
    • 2008
  • The tilt rotor aircraft has the flight characteristics which takes off vertically like a helicopter and flies forward like an airplane. Especially, the transition process from a helicopter to an airplane mode requires not only the mixing of control inputs but also the stability and controllability augmentation system(SCAS) in order to keep the safe flight because there are compound flight dynamic characteristics of a helicopter and an airplane including non-linearity, uncertainty. This paper describes the design of SCAS in a lateral motion for the tilt rotor aircraft based on the $H_{\infty}$ control method, which was performed from mathematical model with weighting matrix based on the relationship between the $H_{\infty}$ norm and the sensitivity function. Through simulation analysis for the controller designed on the $H_{\infty}$ control theory, it was shown that this method may be applied to the control design of the tilt rotor aircraft.

  • PDF

틸트 로터형 무인항공기의 손상허용 설계 (Damage Tolerant Design for the Tilt Rotor UAV)

  • 박영철;임종빈;박정선
    • 항공우주시스템공학회지
    • /
    • 제1권2호
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

정지 비행 시 틸트 로터에서 발생하는 소음 예측 (Noise Prediction of Hovering Tilt Rotor)

  • 김규영;이성규;이덕주;홍석호;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.821-825
    • /
    • 2005
  • Tilt rotor aircraft was developed for satisfying VSTOL (vertical short take off and landing) capability and cruise performance. However the noise generated by tilt rotor system causes one of the most serious problems. In this paper, noise characteristics of tilt rotor system in hovering flight are predicted by using free wake method and Lowson's formula. The flow field of the tilt rotor is simulated by using time marching free wake method, and the free field acoustic pressure is calculated through Lowson's formula. The predicted results are compared with experimental data at various observing positions. In the near field, they show good agreement with experimental data regardless of rotating speed and collective pitch angles of 6, 8 and 10 degree, although there are some discrepancies between prediction and experiment in the far field and at the rotating axis in the near field. It seems that the reason of these discrepancies is difference of unsteady force fluctuation between experiment and calculation.

  • PDF

틸팅각에 따른 로터 블레이드 주위의 유동장 해석 (FLOW ANALYSIS AROUND THE ROTOR BLADE WITH TILT ANGLES)

  • 유영현;최종욱;김성초;김정수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.166-170
    • /
    • 2008
  • The changing process from hovering mode to transition one is of importance to determine a stability of tilt-rotor aircraft, which is utilized in UAV(Unmaned Aerial Vehicle). The analysis on fluid flows and aerodynamic characteristics according to variation of tilting angle of rotor is essential step in development of tilt-rotor. In the present study, the computation domain is divided into the rotating and stationary regions in order to consider the rotating blades. For the convenient realization of various tilting angle as well as application of boundary condition, the whole computation region is constructed into sphere domain. The near farfield boundary condition is adopted. The airfoil used in computation is NACA 0012. The computation results for the hovering mode are validated by comparing with previously conducted experimental results. From the results, the flow fields around rotor blade and the aerodynamic characteristics in transition mode are observed. The computational result will provide the basis for development and performance evaluation of tilt-type aircraft.

  • PDF