• Title/Summary/Keyword: Tilt Switch Sensor

Search Result 2, Processing Time 0.013 seconds

Estimation of the Damage using Tilt Switch Sensors in RC Beams (기울기 스위치 센서를 이용한 철근콘크리트 보의 손상평가)

  • Kim, Dong-Hyun;Kim, Tae-Gon;Choi, Young-Wha;Lim, Heun-Wook;Joo, Jae-Yong;Si, Sung-Dung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.15-16
    • /
    • 2012
  • The estimation of crack damages is studied using the radio frequency system and tilt switch sensors in RC beams. If load is received on the center of the flexible specimen, sensor housing using cement mortar of the flexible specimen will be destroyed, and these are become to send signals of damages at the radio frequency system connected with tilt switch sensors. This study is fundamental research for the estimation of the damage using tilt switch sensors in RC beams.

  • PDF

Development of an Active Gait Assistive Device with Haptic Information (햅틱 연동 능동 보행보조장치 개발)

  • Pyo, Sang-Hun;Oh, Min-Kyun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • The purpose of this research is to develop a gait assistive device to enhance the gait stability and training efficiency of stroke patients. The configuration of this device is mainly composed of a motored wheel and a single cane whose lower end is attached to a motored wheel frame. A patient can feel haptic information from continuous ground contact from the wheel while walking through the grip handle. In addition, the wheeled cane can avoid using excessive use of the patient's upper limb for weight support and motivate the patient to use a paralyzed lower limb more actively. Moreover, the proposed device can provide intuitive and safe user interaction by integrating a force sensor and a tilt sensor equipped to the cane frame, and a switch sensor at the cane's handle. The admittance control has been implemented for the patient to change the walking speed intuitively by using the interaction forces at the handle. A hemi-paretic stroke patient participated in the walking assistive experiments as a pilot study to verify the effectiveness of the proposed haptic cane system. The results showed that the patient could improve walking speed and muscle activations during walking with a constant speed mode of the haptic cane. Moreover, the patient could maintain the preferred walking speeds and gait stability regardless of the magnitude of resistance forces with the admittance control mode of the haptic cane. The proposed robotic gait assistive device with a simple and intuitive mechanism can provide efficient gait training modes to stroke patients with high possibilities of widespread utilizations.