• Title/Summary/Keyword: Tillage methods

Search Result 83, Processing Time 0.021 seconds

Best Management Practices Reducing Soil Loss in the Saprolite Piled Upland in Hongcheon Highland (고령지 석비레 성토 밭의 토양유실 저감을 위한 최적영농관리방안)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Jung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.119-126
    • /
    • 2005
  • Soil erosion at Jawoon-Ri in Hongcheon highland is one of serious problems since saprolite piling on farmland has been typically practiced at 2-3 year's intervals. The objective of the case study was to survey management practices such as tillage, application of saprolite, and cultivating crops and to propose best management practices (BMP) to reduce soil loss in Jawoon-Ri, Hongcheon-Gun. Jawoon-Ri is located in the upper stream of Naerinchun. Upland areas of Jawoon 2 and 4Ri were 206.9 and 142.3 hectare, respectively. Estimation of soil loss in this study was based on USLE (Universal soil loss equation). Annual averaged soil losses were 15.6 MT per hectare in Jawoon-2Ri and 9.0 MT per hectare in Jawoon-4Ri, respectively. This case study tried to find methods to reduce soil erosion below tolerant soil loss level which is $11MT\;ha^{-1}\;yr^{-1}$. Estimated soil losses in more than 40% of uplands in Jawoon-2Ri and 4Ri were higher than tolerant soil loss level. Especially, edge of uplands undergone excessive soil erosion by concentrated runoff water. Therefore consolidation of upland edge was included as one of the proposed Best management practices BMP). The proposed BMP in this area were buffer strips, contour and mulching, diversion drain channel, grassed water-way, detour watet-way and cover crops and so on. Amounts for BMP requirements were 7,680 m for buffer strips, 123 ha (35%) for contour and mulching, 201 ha (57%) for diversion drain channel, 13,880 m for grassed water-way, 3,860 m for detour drainage, 8,365 m for sloping side consolidation and 3,492 ha for cover crops, respectively. Application of BMP are urgently needed in uplands which is direct conjunction with stream.

Use of Discriminant Analysis to Identify Soil Quality Variation by Land Use (판별분석을 이용한 토지이용별 토양 특성 변화 연구)

  • Ko Kyung-Seok;Kim Jae Gon;Lee Jin-Soo;Kim Tack Hyun;Lee Gyoo Ho;Cho Choon Hee;Oh In Suk;Cheong Young Wook
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.207-219
    • /
    • 2005
  • The physical and chemical characteristics of soils in a small watershed were investigated and the effect of geology and land use on soil quality were examined by using multivariate statistical methods, principal components analysis and discriminant analysis. The soil developed from andesite had finer texture and higher contents of water extractable inorganic components, clay, and mafic minerals than the soil developed from granite. It is considered that the accumulation of salts in the farmland soils indicated by electrical conductivity, contents of cations and anions and pH was caused by fertilizer input during cultivation. The low contents of organic matter in the farmland soils was due to the enhanced oxidation of organic matter by tillage and by the harvest of crops. The contents of inorganic components are increased as following order: upland > orchard > paddy field > forest. The high contents of water soluble $SO_4\;^{2-}$ of paddy soils is due to the oxidation of sulfides mineral formed during the flooding period during the air-dry and extraction. The results of principal components analysis show the difference of soil quality was controlled by geology and land use. PCI indicate the input of fertilizer, mineral weathering and ion exchange reaction by application of nitrogenous fertilizers. The results of two discriminant analyses using water extractable inorganic components and their ratios by land use were also clearly classified by discriminant function 1 and 2. In discriminant analysis by components, discriminant function 1 indicated the effect of fertilizer application and increased as following order: upland > orchard > paddy field > forest soil. The investigated and predicted data for land use from discriminant analysis showed similar results. The discriminant analysis can be used as a useful method certifying the change of land use.

Estimation of carbon storage in reclaimed coal mines: Focused on Betula platyphylla, Pinus koraiensis and Pinus spp. plantations (폐탄광 산림복구지의 수종별 탄소 저장량 추정: 자작나무, 잣나무, 소나무류 식재지를 중심으로)

  • Kim, Gwangeun;Kim, Seongjun;Kim, Hyun-Jun;Chang, Hanna;Kim, Hyungsub;Park, Yong-Ha;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.733-743
    • /
    • 2020
  • We estimated the carbon storage of coal mines reclaimed using Betula platyphylla (BP), Pinus koraiensis (PK), and Pinus spp. (PS, Pinus densiflora, Pinus rigida, and Pinus thunbergii). The carbon storage of tree biomass (TB), forest floor(FF), mineral soil (MS), and the total forest were quantified. Reclaimed sites were located in Gangwon-do, Gyeongsangbuk-do, and Jeollanam-do; reclamation was conducted at various times in each region. The carbon storage (ton C ha-1) in FF (BP: 3.31±0.59, PK: 3.60±0.93, PS: 4.65±0.92), MS (BP: 28.62±2.86, PK: 22.26±5.72, PS: 19.95±3.90), and the total forest(BP: 54.81±7.22, PK: 47.29±8.97, PS: 45.50±6.31) were lower than that of natural forests (NF). The carbon storage in TB was lower in BP (22.57±6.18) compared to NF, while those in PK(21.17±8.76) and PS (20.80±6.40) were higher than in NF. While there were no significant differences in the carbon storage of TB, FF, and the total forest among tree species, results from MS showed a significant difference among species. TB and the total forest carbon storages in all sites increased after reclamation. Soil pH and cation exchange capacity values in BP and PS were lower than in NF. Amounts of labile carbon, available phosphate, and microbial biomass carbon in reclaimed sites were less than half of NF. There are a number of methods that could increase the reclamation efficiency. Applications of lime or organic fertilizers, as well as tillage operations, may improve soil properties in reclaimed coal mines. Additionally, pruning and thinning would increase tree growth thereby increasing carbon storage.