• Title/Summary/Keyword: Tieback anchor

Search Result 13, Processing Time 0.021 seconds

A Relation between Anchor Unbonded Length, Anchor Loads, and Wall Deflection in Tieback Anchored Wall (타이백 억지토류벽에서 앵커 자유장 및 앵커하중의 크기와 벽체변위와의 상관성)

  • 임유진
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.187-200
    • /
    • 1999
  • An extensive investigation is performed to analyze the behavior of tieback anchored wall. Finite element method is used and several case histories are collected to investigate the relationship of wall deflection, anchor unbonded length, and anchor load. The finite element method can calculate wall deflection with changing the anchor unbonded length and the anchor load. Wall deflection normalized by excavation height can be related to anchor location so that it may produce a zone chart. It is found that a different chart showing the relation of the wall deflection, the anchor load, and anchor unbonded length can be constructed. It is necessary to collect more case histories considering soil conditions and to perform FE analysis extensively with changing bonded length to extend the capability of this relation chart into practice.

  • PDF

Measured Performance of Full Scale Tieback Walls in

  • Kim, Nak
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.5-24
    • /
    • 1998
  • Two instrumented full scale tieback walls in sand were constructed at to Geotechnical Experimentation Site located on the Texas A 51M University Riversic Measurements were obtained from the one row anchor wall and from the two row at different times during construction. The measured performance of the tieback walls is presented and investigated. The these walls at different construction stage is evaluated with respect to lateral wall. settlement of the ground, bending moment of the wall. axial load distribution and anchor load variation. The fundamental mechanism of a tieback wall in sand is and explained with the measurements.

  • PDF

Mass Movement of Tieback Walls (앵커의 위치에 따른 토류벽의 Mass 변형특성)

  • 김낙경;박종식;주준환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.537-544
    • /
    • 2003
  • Mass movement of anchored walls is defined and its characteristics were discussed. A beam on elasto-plastic foundation modeling of soldier pile and woodlagging tieback walls or anchored walls was developed and used in practice. However, the behavior of an anchored wall can not be predicted well, if the locations of anchor bonded zone are near the wall. Mass movement is defined as the movement of anchor bonded zone due to the excavation without the change in the anchor load. Case histories of anchored walls were analyzed and the normalized mass movement chart were developed. This mass movement chart can provide the idea how to locate anchors to minimize the deflection of the wall. The further the anchor bonded zone is located from the wall, the less the movement of the wall due to excavation occurs.

  • PDF

Deformation Behaviors of Temporary Tieback Wall during Excavation Works (현장계측과 수치해석을 이용한 가설 흙막이 구조물의 변형특성 연구)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 1995
  • During excavation works for underground facilities, temporary tieback wall with earth anchor system was investigated for safety's sake. An excavation 9.7 meter deep was monitored by slope inclinometer in twelve measuring points. Instrumented lateral displacements of the wall during 177 days are represented. Especially, lateral displacements of the two positions under completely different condition are compared to investigate the effect of backfilling between soldier pile and the soil behind wall. The deformation behaviors of the wall according to both depth and elasped time are discussed. Finally, a numerical analysis by the program FLAC was performed, and calculated displacements are compared to measured ones.

  • PDF

Three-Dimensional Finite Element Analysis of Tieback Walls in Sand

  • Lim, Yu-Jin;Briaud, Jean-Louis
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-52
    • /
    • 1997
  • A three dimensional nonlinear finite element analysis is used to study the influence of various design decisions for tieback walls. The numerical model simulates the soldier piles and the tendon bonded length of the anchors with beam elements, the unbonded tendon with a spring element, the wood lagging with the shell elements, and the soil with solid 3D nonlinear elements. The soil model used is a modified hyperbolic model with unloading hysteresis. The complete sequence of construction is simulated including the excavation, and the placement and stressing of the anchors. The numerical model is calibrated against a full scale instrumented tieback wall at the National Geotechnical Experimentation Site (NGES) on the Riverside Campus of Texas A&M University. Then a parametric study is conducted. The results give information on the influence of the following factors on the wall behavior : location of the first anchor, length of the tendon unbonded zone, magnitude of the anchor forces, embedment of the soldier piles, stiffness of the wood lagging, and of the piles. The implications in design are discussed.

  • PDF

A parametric investigation on effect of supporting arrangements on earth retention system

  • Ali Murtaza Rasool;Fawad S. Niazi;Tauqir Ahmed;Mubashir Aziz
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.507-518
    • /
    • 2023
  • The effects of various supporting arrangements have been investigated on an excavation support system using a numerical tool. The purpose of providing different supporting arrangements was to limit the pile wall deflection in the range of 0.5% to 1% of the excavation depth. Firstly, a deep excavation supported by sheet pile wall was modeled and the effects of sheet pile wall thickness, excavation depth and distance to adjacent footings from sheet pile wall face were explored on the soil deformation and wall deflection. Further analysis was performed considering six different arrangements of tieback anchors and struts in order to limit the wall deflections. Case-01 represents the basic excavation geometry supported by sheet pile wall only. In Case-02, sheet pile wall was supported by struts. Case-03 is a sheet pile wall supported by tieback anchors. Likewise, for the Cases 04, 05 and 06, different arrangements of struts and tieback anchors were used. Finally, the effects of different supporting arrangements on soil deformation, sheet pile wall deflection, bending moments and anchor forces have been presented.

Investigation of Tieback wall Behavior based on Generated Mass Movement (Mass Movement가 타이백 앵커 벽체의 거동에 미치는 영향평가)

  • 임유진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.83-92
    • /
    • 2000
  • 벽체의 수평변위 중 토체의 침하 및 앵커체 자체의 움직임 등으로 인해 발생하는 mass movement가 타이백 앵커토류벽의 거동에 미치는 영향을 조사하였다. 시공사례에 대한 유한요소 해석을 실시하여 벽체의 변위, 겉보기토압, mass movement 및 앵커 자유장 내에서의 하중 변화를 투적하였다. 유한요소해석법을 이용해 mass movement를 계산, 예측할 수 있었으며, 시공 순서에 따흔 앵커 자유장 내의 하중변화를 예측할수 있었다. 현장계측결과와 유한요소해석결과로부터 벽체변위, 겉보기토압 및 앵커의 하중 변화에 미치는 mass movement의 영향이 매우 큼을 확인 할 수 있었다.

  • PDF

Earth Pressuroes of Tieback Walls in Sand (사질토에 시공된 앵커토류벽의 토압분포에 관한 연구)

  • 김낙경
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-28
    • /
    • 1998
  • The design of a ground anchor wall calculating the design anchor force and anchored walls depends primarily on the earth pressure acting on anchored w deflection of the wall, the wall stiffness, distribution exists for anchored walls. In the apparent earth pressure envelope design of anchored walls. In this study, full scale anchored w pressure distribution was obtained from function. Earth pressures obtained from pressure and with the apparent earth pre the anchored wall in sand. It is conclude is appropriate for the anchored wall design.

  • PDF