• Title/Summary/Keyword: Tidal movement

Search Result 119, Processing Time 0.03 seconds

Design of Ocean Fishways as Eco-movement Passages (생태이동통로로서의 해양어도의 설계)

  • Jang, Kyung-Soo;Lee, Jung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.624-627
    • /
    • 2009
  • Design of ocean fishways as eco-movement passages for turbine structures, sluice structures and barrages of a environmentally-friendly tidal power system through which fish can pass are suggested. The ocean fishways comprise a plurality of fishways to allow fish to move between the sea-side and the lake-side of the barrages and turbine structures and sluice structures. It is demonstrated that the inventive ocean fishways are cost effective to construct and environmentally-friendly eco-movement passages for fish and benthos to move between sea-side and lake-side without passing through the turbine blades of a tidal power plant in operation.

  • PDF

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

Effect of tidal current turbine using the discharge gate of Siwha tidal power plant on the tidal power generating (시화조력발전소 방류 수문을 활용한 조류발전이 조력발전에 미치는 영향)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.236.2-236.2
    • /
    • 2010
  • The tidal current power is the power plant by installing the turbine or rotor where the tidal speed is fast. This system converting the horizontal movement to rotating energy. Tidal power turbine is needed for the dam to utilize the pressure difference. However, tidal current power using the only flow. The tidal current power was evaluated as the impact on the marine environment surrounding was less and the development of eco-friendly way. In this article, we calculated the effect of tidal current turbine on the tidal power generating by mean of CFD. With these calculated results, we checked the possibility of tidal current power using tidal power plant the discharge gate.

  • PDF

A Study on the Changes of Water Quality due to the Development of Harbor and its Improvement (항만개발에 따른 수질변화 및 개선책에 관한 연구)

  • 국승기;이중우;최성용;김강민
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.123-132
    • /
    • 1999
  • It is very important to quantitatively assess the movement of sea water and pollutant dispersion before or after constructing shore structures such as breakwater considering marine environment and long-term utilization of those structures. This assesment is possible through the use of simulation models designed to predict water movement and pollutant dispersion in a certain area. In this study the numerical computations were carried out to predict the sea water quality in the Ilgwang Harbor located at the east coast of Pusan. The flow patters were investigated before and after the development of Ilgwang Harbor. The computational models adopting ADI Method (Alternating Direction Implicit Method) were used here and were already verified from the previous studies. As a results of this study the tidal exchange in Ilgwang Harbor after development proved to be worse due to the increased semi-enclosed at the harbor limit. In order to improve the water quality of this area after development a new method was proposed to improve water quality in the semi-enclosed bay by creation and control of tidal residual currents. For this purpose the unsymmetric structures so called bottom roughness were introduced in this study. The simulation was carried out on the basis of the study by Komatsu et. al. and Gug and we made a conclusion that it is possible to generate a new tidal residual current and to increase the tidal exchange by application of bottom roughness arrangement.

  • PDF

Nonlinear Finite Element Model for Tidal Analysis(II) -Model Application (조석유동 해석을 위한 비선형 유한요소 모형(II) -모형의 적용-)

  • 나정우;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.37-48
    • /
    • 1995
  • The TIDE, nonlinear finite element model for the simulation of tidal analysis in a shal- low ooastal area was tested for its applicability at the Saemankeum day. Calibration of the TIDE model has been carried out using the six observed field data collected at five locations within the region for tidal velocity. Verification tests have been done using the six observed field data and four data o- tained from the hydraulic model test for the tidal velocity and elevation. Since the simula- tion results for the tidal elevation at Kunsan outer port by the TIDE model are well agreed with the results from the tidal table for one month, it is proved that the TIDE model may be used effectively to predict the tidal movement in the Saemankeum bay for a longer period.

  • PDF

Development of Numerical Model for Mixed Soil Problems Using Dry Bulk Density and Investigation of Its Numerical Stability (건조체적밀도를 적용한 혼합토사 수치모델의 개발과 수치적 안정성 평가)

  • Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.110-121
    • /
    • 2021
  • The importance of tidal flats lost due to industrialization has recently received attention, and attention is being paid to the creation of artificial tidal flats and maintenance of natural tidal flats. However, there is still a lack of understanding about the behavioral characteristics of mud, mud, and sand that form tidal flats. Although research on the movement characteristics of mixed soils such as tidal flats has been conducted through field investigations and hydraulic experiments, interest in developing a numerical model based on these results has not yet reached. In this paper, the purpose of this paper is to establish a mixed soil model that can efficiently manage the low quality of the tidal flats. In constructing a model for reproducing the surface movement of mixed soil, the numerical stability of the reproduction and movement of sand and mud constituting the mixed soil in the numerical model should be considered first, so first, the volume of sand and mud constituting the mixed soil A mixed soil model representing the relationship was proposed based on a topographical diagram representing the geometric structure of the mixed soil. In order to consider the dry bulk density of the mixed soil, it was possible to consider the dry bulk density of the mud by introducing the water content of the mud containing water. In addition, it was confirmed that the mud and sand movement calculation according to the slope collapse of the mixed soil was stably performed through the calculation of the slope collapse of the mixed soil through the numerical analysis model to which the proposed mixed soil model was applied.

Characteristics of Suspended Solids Movement in the Sand Recalmation of Breakwater (방파제 모래치환공사시 부유토사의 거동 특성)

  • Maeng, Jun-Ho;Lee, Ji-Wang;Kim, Byung-Jun;Ko, Jung-Yong;Yang, Gwon-Yeol
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.2
    • /
    • pp.127-142
    • /
    • 2000
  • This research was performed for analyzing the transport of suspended solids during the harbor construction. In behalf of the research, we have analyzes the characteristics of suspended solids movement in sand reclamation of breakwater according to age of tide and tidal period at the construction spot of Pusan new harbor. In the process of sand reclamation, soil was dumped by a dumping device which direct soil from the barge to the bottom of the sea. According to the results from this research, suspended solid concentration was very high in the range of 5m from the dumping point right after the dumping. However these suspended solids settled very quickly and the solids concentration was very beyond 10m from the dumping point. It is deduced that the movement of solids dumped from barge has the tendencies as following; 1) Most of the dumped solids precipitated quickly after the dumping 2) The rest of the suspended solids are diffused slowly toward the bottom of the water being figured smoothing curve 3) The diffusion movement of suspended solids tend to proceed toward the shore line in a parallel motion with tidal current at the sea-bottom That is to say, most of the suspended solids precipitated very quickly even though highly concentrated solids produced at the bottom of the solids which did not precipitated spread with the tidal current horizontally along the bottom of the sea.

  • PDF

Analyses of Correlation Between Groundwater Movement and Tidal Effect in West Costal Landfill Area (서해안 매립지 내 지하수유동과 조석에 관한 상관성 분석)

  • Park Jong-Oh;Song Moo-Yaung;Park Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.293-300
    • /
    • 2006
  • The groundwater movement in the west costal landfill area was analyzed by measuring N value by Standard Penetration Test, coefficient of permeability by falling head method, linear structure analysis by Digital Elevation Method, groundwater flow direction and rate by flowmeter logging due to tidal variation in the each borehole. The coefficients of permeability of the weathered zone and of the marine deposit showed similar values although some values of weathered zone show smaller values than those of the marine deposit. The major groundwater flow and rate in the marine deposit observed as east-west direction due to tidal variation, but on the other hand it was observed as N45E in weathered zone which is the major direction of the linear structures in the area. 2 hours delayed changes of the groundwater flow direction was observed during the 24 hours observation, and it seems to be a travel time of the tidal wave which cause the continuous change of the hydaulic gradient of the groundwater.

Nonlinear Finite Element Model for Tidal Analysis(I) -Model Development- (조석유동 해석을 위한 비선형 유한요소모형(I) -모형의 개발-)

  • 나정우;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.144-154
    • /
    • 1994
  • An efficient tidal model, TIDE which is an iterative type, nonlinear finite element model has developed for the analysis of the tidal movement in the coastal area which is characterized by irregular boundaries and bottom topography. Traditional time domain finite element models have been in difficulties with requirement for high eddy viscosity coefficients and small time steps to insure numerical instability. These problems are overcome by operating in the frequency domain with an elaborate grid system by combining the triangular and quadrilateral shape grids. Furthermore, in order to handle non-linearity which will be more significant in the shallow region, an iterative scheme with least square error minimization algorithm has been implemented in the model. The results of TIDE model are agreed with the analytical solutions in a rectangular channel under the condition of tidal waves entering the channel closed at one end.

  • PDF

Seasonal Variation and Preservation Potential of Tidal-Flat Sediments on the Tidal Flat of Gomso Bay, West Coast of Korea

  • Chang, Jin-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.19-22
    • /
    • 2004
  • Seasonal changes of topograpy, sediment grain size and accumulation rate on the Gomso-Bay tidal flat(Fig. 1), west coast of Korea, have studied in order to understand the seasonal accumulation pattern and preservation potential of tidal-flat sediments. Seasonal levelings across the tidal flat show that the landward movement of both intertidal sand shoals and cheiers accelerates during the winter and typhoon period, but it almost stops in summer when mud deposition is instead predominant on the middle to upper tidal flat. Seasonal variations of mean grain size were largest on the upper part of middle tidal flat where summer mud layers were eroded during the winter and typhoon periods(Fig. 2). Measurements of accululation depths from sea floor to basal plate reveal that accumulation rates were seasonally controlled according to the elevation of tidal-flat surface(Table 1) : the upper flat, where the accumulation rate of summer was generally higher than that of winter, was characterized by a continuous deposition throughout the entire year, whereas on the middle flat, sediment accumulations were concentrated in winter realtive to summer, and were intermittently eroded by typhoons. The lower tidal flat were deposited mostly in winter and eroded during summer typhoons. Cancores taken across the tidal flat reveal that sand-mud interlaers resulting from such seasonal changes of energy regime are preserved only in the upper part of the deposits and generally replaced by storm layers downcore(Fig. 3). Based on above results, it is suggested that the storm deposits formed by winter stors and typhoons would consist of the major part of the Gomso-Bay deposits(Fig. 4).

  • PDF