• Title/Summary/Keyword: Tidal components

Search Result 100, Processing Time 0.03 seconds

Comparison of Sea Level Data from Topex/Poseidon in-situ Tide-Gauges in the East Sea (한반도 동해상에서의 Topex/Poseidon 고도자료와 현장 조위계 관측 자료의 비교연구)

  • Youn, Yong-Hoon;Kim, Na-Young;Kim, Ki-Hyun;Hwang, Jong-Sun;Kim, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In an effort to properly assess the validity of spaceborne radar altimeter measurements, we made a direct comparison of two different sea surface heights (SSH) acquired by both Topex/Poseidon (T/P) satellite and in-situ tide-gauges (T/G). This comparative analysis was conducted using the data sets collected from three locations along the eastern coast of Korea which include: Ulleungdo, Pohang, and Sokcho. In the course of the analysis of satellite altimeter, information of SSH was extracted from the T/P MGDR data sets through the application of both atmospheric and geophysical corrections. To compare the T/P data sets in parallel basis, the T/G data sets were averaged using the measured values within the peripheral radius of 55km. When compared among different locations, the compatibility between the two methods was much more significant in an offshore location (Ulleungdo) than the two onshore locations (Pohang, Sokcho). If the low-pass filtered results were compared among the sites, the offshore site exhibited the best correlations between the two methods (correlation coefficient of 0.91) than those of the onshore sites. These large differences in the strength of correlations among different locations are due to the deformation of M2, S2, and K1 tidal components used in the tidal model. In case of the offshore location, the compatibility of the two different methods were improved systematically by the low-pass filtering with an increase of the filtering duration such as up to 200 days.

Temporal and spatial analysis of SST and thermal fronts in the North East Asia Seas using NOAA/AVHRR data

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.831-835
    • /
    • 2006
  • NOAA/AVHRR data were used to analyze sea surface temperatures (SSTs) and thermal fronts (TFs) in the Korean seas. Temporal and spatial analyses were based on data from 1993 to 2000. Harmonic analysis revealed mean SST distributions of $10{\sim}25^{\circ}C$. Annual amplitudes and phases were $4{\sim}11^{\circ}C$ and $210{\sim}240^{\circ}$, respectively. Inverse distributions of annual amplitudes and phases were found for the study seas, with the exception of the East China Sea, which is affected by the Kuroshio Current. Areas with high amplitudes (large variations in SSTs) showed 'low phases' (early maximum SST); areas with low amplitudes (small variations in SSTs) had 'high phases' (late maximum SST). Empirical orthogonal function (EOF) analyses of SSTs revealed a first-mode variance of 97.6%. Annually, greater SST variations occurred closer to the continent. Temporal components of the second mode showed higher values in 1993, 1994, and 1995. These phenomena seemed to the effect of El $Ni{\tilde{n}}o$. The Sobel edge detection method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and a tidal front (TDF) in the West Sea. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations in the TFs. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May.

  • PDF

A Study on the Methodology of Bioregional Approach for Coastal Area Management - Focus on the Case of Bioregional Classification in the Bay of Hampyong - (연안지역관리를 위한 생물지리지역 접근방법에 관한 연구 - 함평만의 생물지리지역 구분사례를 중심으로 -)

  • Kim, Kwi-Gon;Cho, Dong-Gil;Jung, Sung-Eun;Shin, Ji-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.20-28
    • /
    • 2000
  • The objective of this study is to establish a methodology of bioregional approach for coastal area management as a basis for planning and design. Focusing on the bioregional approach, this study reviewed currently prevailing approaches such as watershed approach and ecological unit approach for planning and management purposes. This research placed its geographical focus on the landward watershed of the Bay of Hampyong located in Chonnam Province, dealing efficiently with shortcomings of existing researches which mainly covered seaward tidal flats without considering outside effects. The main methods of the study are classified into indoor computerized map analysis and field work. For computer analysis, printed maps and digital maps have been analysed, and GIS techniques have been utilized for its synthesis and finalizations. Field work included on-site landscape analysis and verification of a tentative place unit boundary. As a practical step, criteria for classifying bioregion were presented and the selected criteria included : topography & water ways ; roads & administrative boundaries ; habitat types ; and visual enclosure. First, based on the data of topography and water ways, broad classification work was performed and corrections were made based on data drawn out from other criteria. A tentative place unit map was drawn and revised through field visits. This study encompassed an initial but integral part for bioregional approach in landward watershed management of a coastal area. As results of the study, the necessity and efficiency of bioregional approach which considers environmental and cultural components systematically have been presented.

  • PDF

A pilot study on the formation and evolution of the Intracluster light: Preliminary results of the Coma cluster

  • Yoo, Jaewon;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2017
  • Galaxy clusters are the most massive gravitationally bound systems and thus probably the most recent objects to form. One of promising routes to understand the assembly history of galaxy clusters is to measure observable quantities of components in clusters that are sensitive to the evolutionary state of the cluster. Recent deep observations on the nearby clusters show distinct diffuse intracluster light (ICL), that the light from stars are not bound any individual cluster galaxy, however until now this component has not been well studied due to its faint nature, with typical brightness of ~100 times fainter than the sky background. As shown in galaxy cluster simulation studies, the ICL abundance increases during various dynamical exchanges of galaxies such as the disruption of dwarf galaxies, major mergers between galaxies and the tidal stripping of galaxies. Thus, the ICL is an effective tool to measure the evolutionary stage of galaxy clusters. Moreover, the investigation of the ICL evolution mechanism will allow us understand the galaxy evolution process therein. In this pilot study, we target the Coma cluster, where the existing ICL studies are limited only in the central region. With large and uniform deep optical images from the Subaru telescope, available only recently (Okabe et al. 2014), we are developing a robust ICL measurement technique, extracting the ICL surface brightness and color profiles, which will allow us to study the origin of the ICL and its connection to the evolutionary history of the Coma cluster. For the next phase, we plan to utilize the plenty of spectroscopy data from the MMT telescope to compare ICL properties with the star formation history of the brightest cluster galaxies (BCG), and discuss the ICL formation mechanism of the Coma cluster by comparing the distribution of cluster galaxies with the distribution of diffuse light inside the Coma cluster.

  • PDF

A Numerical simulation for the circulation of sea water in the Southern Coastal Waters in Korea (한국 남해안에서 2차원 해수순환모델)

  • KWOUN Chul Hui;CHO Kyu Dae;KIM Dong Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.4
    • /
    • pp.27-40
    • /
    • 2002
  • The circulation of sea water was simulated by two dimensional tide model using the main four tidal components and permanent current driven by inflow/outflow across open boundaries. According to the residt of tide model, the maximum speed of eastward flow on the Cheju Strait is twice higher than that of westward flow. According to the result of permanent current, the flow of permanent current showing semi-circle pattern in the southern part of Kojedo was due to variation of topography. According to the result of circulation model in the Cheju Strait, eastward flow entering in the southern waters from the Yellow Sea of Korea were dominant, but outflows westward were weak. These results suggest that it was difficult to move for suspended particulate matter into the Yellow sea from the southern waters through Cheju Strait.

  • PDF

Denoise of Synthetic and Earth Tidal Effect using Wavelet Transform (웨이브렛 변환을 응용한 합성자료 및 기조력 자료의 잡음 제거)

  • Im, Hyeong Rae;Jin, Hong Seong;Gwon, Byeong Du
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • We have studied a denoising technique involving wavelet transform for improving the quality of geophysical data during the preprocessing stage. To assess the effectiveness of this technique, we have made synthetic data contaminated by random noises and compared the results of denoising with those obtained by conventional low-pass filtering. The low-pass filtering of the sinusoidal signal having a sharp discontinuity between the first and last sample values shows apparent errors related to Gibbs' phenomena. For the case of bump signal, the low-pass filtering induces maximum errors on peak values by removing some high-frequency components of signal itself. The wavelet transform technique, however, denoises these signals with much less adverse effects owing to its pertinent properties on locality of wavelet and easy discrimination of noise and signal in the wavelet domain. The field data of gravity tide are denoised by using soft threshold, which shrinked all the wavelet coefficients toward the origin, and the G-factor is determined by comparing the denoised data and theoretical data.

  • PDF

Analysis of Long-term Linear Trends of the Sea Surface Height Along the Korean Coast based on Quantile Regression (분위회귀를 이용한 한반도 연안 해면 고도의 장주기 선형 추세 분석)

  • LIM, BYEONG-JUN;CHANG, YOU-SOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.2
    • /
    • pp.63-75
    • /
    • 2018
  • This study analyzed the long-term linear trends of the sea surface height around the Korea marginal seas for the period of 1993~2016 by using quantile regression. We found significant difference about 2~3 mm/year for the linear trend between OLS (ordinary least square) and median (50%) quantile regression especially in the Yellow Sea, which is affected by extreme events. Each area shows different trend for each quantile (lower (1%), median (50%) and upper (99%)). Most areas of the Yellow Sea show increasing trend in both low and upper quantile, but significant "upward divergence tendency". This implies that significant increasing trend of upper quantile is higher than that of lower quantile in this area. Meanwhile, South Sea of Korea generally shows "upward convergence tendency" representing that increasing trend of upper quantile is lower than that of lower quantile. This study also confirmed that these tendencies can be eliminated by removing major tidal components from the harmonic analysis. Therefore, it is assumed that the regional characteristics are related to the long term change of tide amplitude.

Establishment of Integrated Health Evaluation Criteria for Coastal Aquaculture System (살포식 패류 양식어장 건강도 평가기준 설정)

  • Young-Shin Go;Dong-Hun Lee;Young-Jae Lee;Won-Chan Lee;Un-Ki Hwang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.462-472
    • /
    • 2023
  • We investigated the physio-chemical and geochemical parameters in the spraying shellfish aquacultures (Yeoja and Gangjin Bay) to establish the systematic strategy for effective environmental management. Spatial variation of each parameter showed partially significant difference (P<0.05) between Yeoja and Ganjin Bay, inferring the discriminative progress (i.e., accumulation and degradation) of the autochthonous organic matter within the aquaculture environments. We additionally integrated various properties (e.g., water/sediment quality, natural hazard, and biological health) which may affect the biological growth within the aquaculture habitats based on the biogeochemical cycles related to environmental components and aquaculture species. We used a screening approach (i.e., one out-all out; OOAO) which can permit the assessment of the health levels of aquaculture species, the scoring for other parameters (seawater, sediment, and natural hazard) as three levels (excellent, moderate and poor) depending on the complex interactive properties occurring in the aquaculture environments. Actual, discriminative scores obtained via our case studies may confirm that these stepwise processes are effectively evaluated for optimal health conditions within the aquaculture habitats. Thus, this approach may provide valuable insights for effective environmental management and sustainable growth of aquaculture operation.

Periodic Variation of Water Table at a Headwater Catchment in the Gwangneung Ecohydrological Research Site (광릉 수문연구부지 내 원두부 소유역에서 지하수면의 주기적 변동 특성)

  • Kim, Yu-Lee;Woo, Nam-C.;Lee, Sang-Duck;Hong, Tae-Kyung;Kim, Joon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2008
  • Periodic fluctuation of water levels were analyzed for their causes and effects on groundwater movement. Groundwater levels were monitored from two shallow monitoring wells, G1 and G4, located at a headwater catchment in the Gwangneung Ecohydrological Research Site using pressure transducers with automatic data-loggers by five-minute interval from February to October, 2006. The water table fluctuates on a daily basis with a clear diurnal variation, and the fluctuation amplitude increases with time from the winter to the summer. Results from spectral analysis of water-level data show periodic variations in 24.38 hour and in 12.19 hour, indicating $P_1$ diurnal and $L_2$ semidiurnal tidal components, respectively. The diurnal component of the water level in summer has greater power than that in winter, implying that the water table is affected not only by earth tides, but also by evapotranspiration. Right after rain stops, the power of diurnal component of the water level decreases, indicating that evapotranspiration influences significantly diurnal periodicity. The effects of diurnal and semidiurnal components of the water level range from 0.4 to 4.2 cm and from 0.2 to 0.7 cm, respectively.

Development of Test Equipment for Complex Underwater Environments (수중복합 환경시험장비의 개발에 관한 연구)

  • Kim, Jong Cheol;Lee, Gi Chun;Choi, Byung Oh;Jung, Dong Soo;Lee, Choong Sung;Jeon, Jun Wan;Lee, Jae Ho;Hwang, Kyung Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.871-877
    • /
    • 2015
  • Deep-sea equipment such as underwater robots and unmanned submersible vehicles, include various machine components and sensors, and it is important that their reliabilities be tested before use in the fields. This is necessary because they are affected by complex extreme-environment conditions, such as high pressures, extreme temperatures, and tidal forces that are present in the deep sea. We require test equipment that can conduct empirical tests in conditions that mimic these complex oceanic environments. In this study, we propose specifications that should be met, and a design plan for the primary components, which should limit their use to a maximum water pressure of 2.0 MPa, water temperature of $5{\sim}60^{\circ}C$, and a maximum flow velocity of 2 m/s. in work-in type underwater combined environment test equipment and. We present test system development procedures to verify the reliability of products and systems used in deep-sea environments.