• Title/Summary/Keyword: Tidal Correction

Search Result 51, Processing Time 0.026 seconds

Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine (500kW급 수평축 조류발전기의 수력 최적 설계)

  • Ryu, Ki-Wahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

Refinement of the Global Ocean Tidal Charts (전구해양 조석도의 개선)

  • Park, Byung-Ho;Kexiu Liu;Ji Wang
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.176-181
    • /
    • 2000
  • This paper briefly outline the approach we are now setting for improving the existing global ocean tidal charts in next few years. There has been notable progress in predicting global ocean tide in mid 90s to improve correction procedures for tidal signals in altimetry with more accurate tidal models (http://podaac.jpl.nasa.gov/) than existing ones. (omitted)

  • PDF

Topography in intertidal zone by satellite images

  • Kang, Yong-Q.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.664-669
    • /
    • 2002
  • Intertidal zone (tidal flat) is a place which is sometimes dry and sometimes wet depending on the tidal rhythm. Direct measurement of topography in the intertidal zone is very difficult to be achieved. The interface between wet and dry parts in the tidal flat, which can be identified from near infrared band of satellite image, is a 'depth contour' which corresponds to the sea level at the time of satellite pass. Aquisition of topography data in tidal flat is possible by combining various techniques such as (1) identification of the interface between wet and dry parts, (2) GCP correction of satellite image, and (3) realtime prediction of sea level elevation at the time of satellite pass. The algorithm was successfully applied in obtaining topography (bathymetry) data in the intertidal zone of Asan Bay in the west coast of Korea from 26 satellite images. The method is expected to be very efficient in making bathymetry data base in the western and southern parts of Korea where tidal flats are well developed in wide regions.

  • PDF

Long-term Monthly Variations of Tide in Pusan Harbour (부산항 조석의 장기 월별 변동 특성)

  • 김종규;강태순
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.6-9
    • /
    • 2002
  • The long-term monthly variations of tide with tidal harmonic analysis in Pusan Harbour are investigated. The present spring tidal range decreased 1.4 cm and the variation of phase lag increased than 1974. The high and low water level of yearly mean sea level is show during the February to March and August to September, respectively. It is important to note that the larger lunar elliptic N2 is large in comparison with lunisolar diurnal K1 and principal lunar diurnal O1. The ratios (Correction Factors) of monthly mean sea level and the main 4 tidal constituents are evaluated to correct the shortly (monthly) observed tide for the design of harbour facilities.

Overview of Tidal Phase-lag References Used in Korea (우리나라 조석지각 기준 표기에 대한 고찰)

  • Byun, Do-Seong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.234-238
    • /
    • 2007
  • Three different tidal phase-lag references have been used by the tidal research community of Korea: Greek kappa (k), Local standard time zone ($135^{\circ}E$) phase-lag (g) and Greenwich phase-lag (G). This ununified tidal information system may induce confusion in understanding tidal characteristics and their variability and impede the development of tidal knowledge in Korea. In this study we closely explore the three phase-lag reference definition with respect to their mutual conversion. We also identify an incorrect phase-lag reference definition used in previous works and discuss what has led to this misunderstanding.

The Shape and Virial Theorem of a Star Cluster in the Galactic Tidal Force Field

  • Lee, See-Woo;Rood, Herbert J.
    • Journal of The Korean Astronomical Society
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1969
  • On the instantaneous tidal relaxation approximation, formulae are derived for the ellipticities and virial theorem of a slightly flattened homogeneous rotating cluster (the largest axis of the cluster is directed towards the Galactic center), in terms of the Galactic tidal force and the characteristic intrinsic plus orbital angular velocity. The expression for a purely tidally-determined ellipticity is identical to that for an incompressible fluid body of uniform density. Orbital motion generally contributes significantly to the shape of the cluster. The virial theorem is identical to that for an isolated cluster except that the gravitational potential energy is multiplied by (1-${\chi}$), where ${\chi}$ is a positive tidal correction term. To obtain the actual mass of a cluster, the virial theorem mass based on an isolated cluster should be multiplied by the factor 1/(1-${\chi}$). The formulae are applied to open star clusters, the globular cluster ${\omega}$ Centauri, and dwarf elliptical galaxies in the Local Group.

  • PDF

Modelling of Tides in the East Asian Marginal Seas (동아시아 해역의 조석 모형)

  • 최병호;고진석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.94-108
    • /
    • 1994
  • As satellite altimetry is being progressed to apply with higher precision to maginal seas. it is necessary to improve correction procedures for tidal signals in altimetry with more accurate tidal model than the well-known model of Schwiderski for studying marginal sea dynamics. As a first step, tidal regime of semidiurnal tides (M$_2$, S$_2$, $N_2$, $K_2$) and diurnal tides (K$_1$, $O_1$, P$_1$, Q$_1$) were computed with finer details of formulation of tidal model over the East Asian Marginal Seas covering the Okhotsk Sea and South China Sea and part of Northwest Pacific Ocean with mesh resolutions of 1/6$^{\circ}$. Computed results were discussed with observations, previous tidal charts and Schwiderski's tidal map of the region.

  • PDF

An Estimation of Tidal Currents from Satellite-tracked Drifters and its Application to the Yellow Sea

  • Lee, Se-Ok;Cho, CHeol-Ho;Kang, Sok-Kuh;Lie, Heung-Jae
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.65-77
    • /
    • 2000
  • A simple but effective method has been developed for estimating diurnal and semi-diurnal tidal currents from trajectories of satellite-tracked drifters. The estimation method consists of separation of tidal current signals contained in the drifter trajectories, computation of undulations by diurnal and semi-diurnal currents, and correction of dominant diurnal and semi-diurnal tidal constituents. M$_2$ tidal currents estimated from drifter trajectories in the Yellow Sea are well consistent with those observed by moored current meters and this supports the validity of this method. We have constructed M$_2$ tidal current chart in the Yellow Sea by applying this method to available drifter trajectories collected during 1994-1998. According to this chart, M$_2$ current in the Yellow Sea rotates in the clockwise direction south of 35$^{\circ}$ 30'N but in the counterclockwise one to the north. Also it is found that the M$_2$ current is strong in the bank area northeast of the Changjiang River mouth and in the Korean coastal area, while it is weak in the deep central trough.

  • PDF

Numerical Simulation for Behavior of Tidal Elevation and Tidal Currents in the South Sea (남해안의 조위 및 조류거동 수치모의)

  • Kwon, Seok-Jae;Kang, Tae-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.253-265
    • /
    • 2007
  • This study applied the previous results of the NAO model, a tidal correction model, to the open boundary condition for the behavior of tidal elevation and tidal currents in the South Sea. This study used the EFDC model considering the wetting and drying problem and using the $\sigma-coordinate$ as a vertical coordinate and generated two mesh cases of the constant grid size of 2.0 km and the variable grid size of $0.5\sim2.0km$. The numerical results for the tides showed that the predicted results were in quite good agreements with the observational data acquired from the tidal stations of the NORI. The predicted tides were observed to propagate from the east area to the west area in the South Sea. The verification results reveal that the numerical results are more correlated with the measured tidal data as the grid size decreases. The grid size of 2 km results in proper simulation of tidal currents in wide waterway and offshore area whereas the numerical results from the grid size of 0.5 km tend to somewhat underestimate the tidal currents affected by narrow waterway and topography in inner-bay.

A Study on Development of the Tidal Database for the Philippines (필리핀을 위한 조석 데이터베이스 개발에 관한 연구)

  • PARK, Eung-Hyun;AHN, Se-Jin;SHIM, Moon-Bo;JEON, Hae-Yeon;KANG, Ho-Yun;KIM, Dae-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.158-168
    • /
    • 2019
  • Korea Hydrographic and Oceanographic Agency(KHOA) carried out a research project named 'Marine Fisheries Infrastructure Construction and Technology Training for the Philippines' as part of the 1st Official Development Assistance(ODA) from 2015 to 2018. It is preparing for the 2nd ODA project which will begin in 2020. Besides, recently, the Philippines is paying attention to marine territory management and response capability due to problems such as the sea-level rise and coastal erosion caused by climate change. Therefore, before 2nd ODA to the Philippines, this study analyzed the vertical ocean model on the vertical datum in Korea and suggests the direction of development of the vertical ocean modeling system for the vertical datum in the Philippines using the observed data from the permanent tide station which was built by the Philippines ODA research project over the last four years. Moreover, as a pilot study, the Sulu Sea in the Philippines was selected and analyzed by harmonic analysis method. At each tide station, constants for correction had been computed. And the grid-based tidal model was constructed based on this study. As a result of the study, similar tidal characteristic were observed when the prediction and the measured tide were compared by applying the constants for correction between two station in the sea area with similar tidal level. These results could be used as basic data for the 2nd ODA to the Philippines, and contributed to construct and maintain a close cooperation and friendship between Korea and the Philippines.