• Title/Summary/Keyword: TiSBA-15

Search Result 10, Processing Time 0.022 seconds

Photocatalytic Decomposition of Methylene Blue over Sm Ion Doped Ti-SBA-15 Catalysts (Sm이온이 도핑된 Ti-SBA-15 촉매에서의 메틸렌블루의 광촉매 분해 반응)

  • Jung, Won-Young;Lee, Seong-Hun;Hong, Seong-Soo
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.511-517
    • /
    • 2011
  • Ti-SBA-15 catalysts doped with samarium ion were synthesized using conventional hydrothermal method. The physical properties of Sm/Ti-SBA-15 catalysts have been characterized by XRD, FT-IR, DRS and PL. In addition, we have also examined the activity of these materials on the photocatalytic decomposition of methylene blue. The Sm/ Ti-SBA-15 was shown to have the mesoporous structure regardless of Sm ion doping. With doping amount of 1% lanthanide ion, the pore size and pore volume of Sm(Er, Cs)/Ti-SBA-15 decreased and the surface area increased. For the purpose of vibration characteristics on the Ti-SBA-15 and Sm/Ti-SBA-15 photocatalysts, the IR absorption at 960 $cm^{-1}$ commonly accepted the characteristic vibration of Ti-O-Si bond. 1% of Sm/Ti-SBA-15 had the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with Er ions had lower activity in comparison with pure Ti-SBA-15 catalyst.

Synthesis of Ti-SBA-15 Doped with Lanthanide Ions and Their Photocatalytic Activity (란탄족 이온이 도핑된 Ti-SBA-15의 합성 및 그들의 광촉매 활성)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Ti-SBA-15 catalysts doped with lanthanide ions (Ln/Ti-SBA-15) were successfully synthesized using conventional hydrothermal method. In addition, they were characterized by XRD, FT-IR, DRS, BET, and PL. The activity of these materials on the photocatalytic decomposition of methylene blue under ultraviolet light irradiation was also examined. Ti-SBA-15 catalysts doped with various lanthanide ions maintained their mesoporous structure. The pore size and pore volume of Ln/Ti-SBA-15 materials decreased but their surface area increased upon the doping of lanthanide ion. Ln/Ti-SBA-15 materials exhibited the type IV nitrogen isotherm with desorption hysteresis loop type H2, which was characteristic of mesoporous materials. The size of hysteresis increased in the doping of lanthanide ions on Ti-SBA-15 material. There was no absorption in the visible region (> 400 nm) regardless of the doping of lanthanide ions to TiO2 particles, while the broad bands at 220 nm appeared at the Ln/Ti-SBA-15 samples, indicating the framework incorporation of titanium into SBA-15. 1 mol% Pr/ Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the Ti-SBA-15 catalysts doped with Eu, Er, and Nd ions showed lower activity compared to pure Ti-SBA-15 catalyst. The PL peaks appeared at about 410 nm at all catalysts while the excitonic PL signal was proportional to the photocatalytic activity for the decomposition of methylene blue.

Synthesis of Ti-SBA-15 Doped with Lanthanide Ion and Photocatalytic Decomposition of Methylene Blue (La 이온이 도핑된 Ti-SBA-15의 합성 및 메틸렌블루의 광촉매 분해 반응)

  • Jung, Won-Young;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.323-327
    • /
    • 2010
  • Ti-SBA-15 catalysts doped with lanthanide ion were synthesized using conventional hydrothermal method and they were characterized by XRD, FT-IR, DRS, $NH_3$-TPD and PL. We also examined the activity of these materials on the photocatalytic decomposition of methylene blue. La/Ti-SBA-15 samples with varying lanthanide ions doping maintained the mesoporous structure and the catalysts calcined at $500^{\circ}C$ for 6 h showed the highest crystallinity. With increasing the doping amount of lanthanide ion, the pore size and pore volume of La/Ti-SBA-15 materials decreased but the surface area increased. 1% La/Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with more than 5% lanthanide ions showed lower activity compared to pure Ti-SBA-15 catalyst.

Characteristics of Oxidative Desulfurization(ODS) of Sulfur Compounds in Diesel Fuel over Ti-grafted SBA-15 Catalyst (Ti-grafted SBA-15 촉매를 이용한 경유유분 중의 황화합물의 선택산화탈황 특성)

  • Cho, Chin-Soo;Jeong, Kwang-Eun;Chae, Ho-Jeong;Kim, Chul-Ung;Jeong, Soon-Yong;Oh, Sung-Geun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.845-851
    • /
    • 2008
  • Oxidative desulfurizaton of model sulfur compounds and Industrial diesel fuel(LCO; Light Cycle Oil) over Ti-grafted SBA-15 catalyst was studied in a batch reactor with tert-Butyl Hydroperoxide(TBHP) as oxidant. Effects of Ti loading, TBHP/Sulfur mole ratio, reaction temperature on ODS activity and kinetic parameters were investigated. Ti-grafted SBA-15 catalyst showed higher sulfur removal activity in the oxidative desulfurization reaction of refractory sulfur compounds(DBT and 4, 6-DMDBT) and LCO, suggesting that Ti-grafted SBA-15 catalyst could be a good candidate for ODS catalyst.

Photocatalytic effects of heteropolytungstic acid - encapsulated TiSBA-15 on decomposition of phenol in water

  • Sambandam Anandan;Yoon, Min-Joong;Park, Sang-Eon
    • Journal of Photoscience
    • /
    • v.10 no.3
    • /
    • pp.231-236
    • /
    • 2003
  • TiO$_2$ has been used as photocatalyst since two and half decades ago. The efficiency in its photocatalytic reactions has been improved by increasing the surface area of the photocatalyst by supporting fine TiO$_2$ particles on some porous materials. In this work, heteropolytungstic acid (HPA) - encapsulated into the titanium exchanged SBA-15 mesoporous materials (TiSBA-15) were prepared and characterized. Also their photocatalytic effects on decomposition of phenol were investigated and the photodecomposition rates of the phenol were observed to be increased by 2.5 8 fold, as compared to those observed in the presence of HPA-encapsulated SBA-15 or TiSBA-15 without HPA.

  • PDF

Preferential Oxidation of CO over Cu/Ti-SBA-15 Catalysts (Cu 담지 Ti-SBA-15 촉매의 선택적 CO 산화 반응)

  • Kim, Joon-Woo;Park, Jae-Woo;Lee, Jong-Soo;Choi, Han-Seul;Choung, Suk-Jin
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.432-437
    • /
    • 2013
  • The CO preferential oxidation reaction (PROX) has been done using Cu catalytic active species supported on some of mesoporous silica materials which can facilitate the diffusion of the reactants in order to prevent the poisoning of anode active materials by CO molecules during driving polymer electrolyte fuel cells (PEMFC) in this study. As a result when SBA-15 with large pore used as a support showed excellent CO oxidation activity, especially the activity increased in proportion to the amount of supported Cu. Ti components which was inserted to increase the degree of dispersion of Cu, contributed to improving the performance for CO oxidation at low-temperature. The degree of dispersion of Cu ingredients was the best in the catalyst inserted 20 mol-% Ti into the framework of SBA-15, and CO oxidation activity was also improved.

Polymerization of Polyethylene Using Bimodal TiCl4/MgCl2/SBA-15/MCM-41

  • Moonyakmoon, Mattanawadee;Klinsrisuk, Sujitra;Poonsawat, Choosak
    • Particle and aerosol research
    • /
    • v.11 no.3
    • /
    • pp.87-92
    • /
    • 2015
  • MCM-41 (Mobil Composition of Matter) and SBA-15 (Santa Barbara Amorphous) were used as a supported catalyst for ethylene polymerization due to their combination of large surface area and wide range of pore size distribution. The morphology of supports was used to control the morphology of the resulting polymer. Different molar ratios of Al/Ti were used for ethylene polymerization at $60^{\circ}C$ under atmospheric pressure. The effect of different mass ratios of MCM-41/SBA-15 and 1-hexene concentration on polymerization activity and polymer properties was investigated. The catalytic activity and the crystallinity reached the highest value at Al/Ti of 480. Upon incorporation of MCM-41 and SBA-15 into $MgCl_2/TiCl_4$ catalyst, the molecular weight and crystallinity of polyethylene were enhanced. The obtained polyethylene showed melting temperature between 130 and $135^{\circ}C$. The polyethylene with replication structure of support and bimodal MWD was expected.

Oxidative Dehydrogenation of n-Butane over Cr Catalysts Supported on Alumina and SBA-15 (Cr이 담지 된 알루미나, SBA-15 촉매에서 n-부탄의 산화적 탈수소화 반응)

  • Shin, Jin Hyun;Shin, Jin Ho;Cho, Deug Hee;Ko, Moon Kyu
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.364-369
    • /
    • 2013
  • Oxidative dehydrogenation of n-butane over mesoporous Cr catalysts were studied. Catalysts were prepared by Cr impregnated method over Ti or Zr dispersed mesoporous support such as SBA-15, ${\gamma}$-alumina and characterized by XRD, SEM, TEM, FT-IR UV-Vis and ICP-AES. The effect of high surface area was not noticed appreciably in terms of conversion, but for Cr catalysts with Ti and Zr-incorporated on SBA-15 and ${\gamma}$-alumina. showed high selectivity of trans-2-butene.

Surface modified mesoporous silica (SBA-15) for phosphate adsorbents in water (표면 개질된 메조기공실리카를 이용한 수중의 인 제거)

  • Lee, Seung-Yeon;Choi, Jae-Woo;Lee, Sang-Hyup;Lee, Hae-Goon;Lee, Ki-Bong;Hong, Seok-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.719-724
    • /
    • 2011
  • The excessive phosphate in water causes eutrophication which destroys water environment. In this study, mesoporous silica was synthesized and several functional groups were attached on it. Samples were tested to identify the ability to remove phosphate. The structures of synthesized materials were analyzed by X-ray diffractions (XRD), Fourier transform-infrared (FT-IR) and surface area analysis, Brunauer-Emmett-Teller (BET). To determine the maximum phosphate adsorption capacities and sorption rate, the equilibrium test and kinetic test was conducted. Among functionalized SBA-15 samples, pure SBA-15 didn't adsorb phosphate but Al-SBA-15 and Ti-SBA-15 showed good performances to remove phosphate. The maximum phosphate adsorption capacity of Al-SBA-15 was efficient compared to other adsorbents.

Selective Adsorption of Sulfur Compounds from Natural Gas Fuel Using Nanoporous Molecular Sieves (나노세공 분자체를 이용한 천연가스 연료로부터 황 화합물의 선택적 흡착)

  • Kim, Hoon-Sung;Chung, Jong-Kook;Lee, Seok-Hee;Cheon, Jae-Kee;Moon, Myung-Joon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.64-71
    • /
    • 2007
  • The selection of a suitable adsorbent for removing organic sulfur compounds tetrahydrothiophene (THT) and t-butylmercaptan (TBM) from natural gas has been carried out. The saturation adsorption capacity for the sulfur compounds were determined by pulse adsorption method for a group of nanoporous materials, including Na-Y, Na-ZSM-5, Na,K-ET(A)S-10, Na-Mordenite, Na,K-Clinoptitolite, Ti/MCM-41, Ti/SBA-15 and amorphous titanosilicates. Among the materials tested, Na-Y and Na,K-ET(A)S-10 zeolites showed high adsorptive capacities for THT and TBM. The saturation capacity for THT on Na,K-ETS-10 was comparable with that on Na-Y zeolite, which is well known as an effective adsorbent. The capacity and adsorptivity for THT and TBM on Na,K-ETAS-10 were improved by an increase in crystallinity of Na,K-ETAS-10. An investigation of the competitive adsorption between THT and TBM from the breakthrough test using a simulated natural gas indicates that Na,K-ETS-10 selectively adsorbs THT. The breakthrough capacity for THT on Na,K-ETS-10 was 1.19 mmol/g. The results show that the high adsorption performance of Na.K-ETS-10 and Na,K-ETAS-10 is due to the highly exchanged cations in the zeolitic structure which exhibit the strong electrostatic interactions with organic sulfur compounds and their wide pore nature.

  • PDF