• Title/Summary/Keyword: TiN particle

Search Result 105, Processing Time 0.023 seconds

Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002 (DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.

Studies on the Development for Sustained Release Preparation (II):Preparation and Evaluation of Eudragit Microcapsules of Sodium Naproxen

  • Shin, Sang-Chul;Lee, Keong-Ran
    • Archives of Pharmacal Research
    • /
    • v.16 no.1
    • /
    • pp.50-56
    • /
    • 1993
  • The microencapsulation of sodium naproxen with Eudragit. RS was studied by coacrtvation/phase separation process using Span 80 in mineral oil/acetone system. Various factors which affect the mciroencapsulation, e.g., stirring speed, and surfactant concentraction, Eudagit RS concentration and loading drug amounts were examined. For the evaluation of the prepared microcapsules, release rate, particle size distribution and surface appearance as well as in vivo test were carried out. The addition of n-hexane and freezing of microcapsules accelerated the hardening of microcapsules. The optimum concentration of Span 80 ti prepare the smallest microcapsules was the same value with the CMC of Span 80 in solvent system. When 1.5% (w/w) Span 80 was used, the smallest microcapsules were formed $(30.02\pm5.05\mu$ in diameter) belonging to the powder category showing smooth, round and uniform surface. The release of sodium naproxen was retarded by microencapsulation with Eudragit RS. The Eudragit RS microcapsules showed significantly increased AUC and MRT and deceased Cl/F in rabbits.

  • PDF

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

Formation of Particles in the Laser Melted Zone of Alloy 600

  • Lim, Yun-Soo;Cho, Hai-Dong;Kuk, Il-Hiun;Kim, Joung-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.80-85
    • /
    • 1997
  • Studies on particles formed in the laser melted zone (LMZ) of sensitized Ni base Alloy 600 have been carried out using microscopic equipments. Most of them were identified as TiN type and MgS type particles were also found in the cell boundaries. All of the particles were located in the cellular solidification region, but no particle was formed in the plane front solidification regions of the LMZ. Cr carbides which had formed during sensitization treatment were completely melted during laser surface melting and hardly re-precipitated during the matrix solidification.

  • PDF

Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles

  • Choi, Soohoon;Chen, Ching-Lung;Johnston, Murray V.;Wang, Gen Suh;Huang, Chin-Pao
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.29-37
    • /
    • 2022
  • To verify the fate and transport of engineered nanoparticles (ENP), it is essential to understand its interactions with organic matter. Previous research has shown that dissolved organic matter (DOM) can increase particle stability through steric repulsion. However, the majority of the research has been focused on model organic matter such as humic or fulvic acids, lacking the understanding of organic matter found in field conditions. In the current study, organic matter was sampled from wastewater treatment plants to verify the stability of engineered nanoparticles (ENP) under field conditions. To understand how different types of organic matter may affect the fate of ENP, wastewater was sampled and separated based on their size; as small organic particular matter (SOPM) and large organic particular matter (LOPM), and dissolved organic matter (DOM). Each size fraction of organic matter was tested to verify their effects on nano-zinc oxide (nZnO) and nano-titanium oxide (nTiO2) stability. For DOM, critical coagulation concentration (CCC) experiments were conducted, while sorption experiments were conducted for organic particulates. Results showed that under field conditions, the surface charge of the particles did not influence the stability. On the contrary, surface charge of the particles influenced the amount of sorption onto particulate forms of organic matter. Results of the current research show how the size of organic matter influences the fate and transport of different ENPs under field conditions.

Eu-doped LGF Luminescent Down Converter Possible for TiO2 Dye Sensitized Solar Cells

  • Kim, Hyun-Ju;Song, Jae-Sung;Lee, Dong-Yun;Lee, Won-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.89-92
    • /
    • 2004
  • For improving solar efficiencies, down conversion of high-energy photons to visible lights is discussed. The losses due to thermalization of charge carriers generated by the absorption of high-energy photons, can largely be reduced in a solar cell if more than one electron-hole pair can be generated per incident photon. The solar cell was constructed of dye-sensitized anatase-based TiO$_2$, approximately 30nm particle size, 6$\mu\textrm{m}$thickness, and 6${\times}$6$\textrm{mm}^2$ active area, Pt counter electrode and I$_3$$\^$-/I$_2$$\^$-/ electrolyte. After correction for losses due to light reflection and absorption by the conducting glass, the conversion of photons to electric current is practically quantitative in the plateau region of the curves. The incident photon to current conversion efficiency(IPCE) of N3 used as a dye in this work is about 80% at around 590nm and 610nm which is the emission spectrum of Eu doped LGF. The Eu doped LGF powder was prepared by conventional ceramic process, and used as a down converter for DSC after spin coated on the slide glass and fired.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Variation of the Electrokinetic Potential and Surface Energy Profile of a Binary Mixture Dispersion with Mixing Ratio (이종혼합부유물질의 양에 따른 electrokinetic potential 및 surface energy profile의 변화 양상)

  • Kim, Hee-Jin;Jeong, Hye-Won;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.115-120
    • /
    • 2012
  • Different colloidal particles generally co-exist in the water and wastewater. Thus, there needs to identify practical electrokinetic characteristics of the particles, comparing with the case when each colloidal material is independently distributed. In this study, changes of overall zeta potential was examined through mixed dispersions of $TiO_{2}$ and $MnO_{2}$. The mixing ratios were classified into 3-type in order to distinguish the effects of the proportions of each particle from those of total concentration in colloidal suspensions. The types are single colloidal dispersions of $TiO_{2}$ and $MnO_{2}$ (1:0, 0:1), mixed dispersions at different ratios (0.75:0.25, 0.5:0.5, 0.25:0.75), and a mixed dispersion with doubled concentration (1:1), respectively. It showed that the overall variation of zeta potential as a function of pH was intensified in a colloidal dispersion with the ratio of 1:1. It was concerned that the double action of ion would contribute to this result. On the one hand, the zeta potentials of each colloidal dispersion commonly decreased at the state of strong acid and base under the influence of compression of the electric double layer. The changing patterns were also considered through calculating total interaction energy between colloidal particles based on DLVO theory and measuring turbidity of the colloidal dispersions.

Low-Temperature Combustion of Ethanol over Supported Platinum Catalysts (백금 담지 촉매상에서 에탄올의 저온연소)

  • Kim, Moon Hyeon
    • Journal of Environmental Science International
    • /
    • v.26 no.1
    • /
    • pp.67-78
    • /
    • 2017
  • Combustion of ethanol (EtOH) at low temperatures has been studied using titania- and silica-supported platinum nanocrystallites with different sizes in a wide range of 1~25 nm, to see if EtOH can be used as a clean, alternative fuel, i.e., one that does not emit sulfur oxides, fine particulates and nitrogen oxides, and if the combustion flue gas can be used for directly heating the interior of greenhouses. The results of $H_2-N_2O$ titration on the supported Pt catalysts with no calcination indicate a metal dispersion of $0.97{\pm}0.1$, corresponding to ca. 1.2 nm, while the calcination of 0.65% $Pt/SiO_2$ at 600 and $900^{\circ}C$ gives the respective sizes of 13.7 and 24.6 nm when using X-ray diffraction technique, as expected. A comparison of EtOH combustion using $Pt/TiO_2$ and $Pt/SiO_2$ catalysts with the same metal content, dispersion and nanoparticle size discloses that the former is better at all temperatures up to $200^{\circ}C$, suggesting that some acid sites can play a role for the combustion. There is a noticeable difference in the combustion characteristics of EtOH at $80{\sim}200^{\circ}C$ between samples of 0.65% $Pt/SiO_2$ consisting of different metal particle sizes; the catalyst with larger platinum nanoparticles shows higher intrinsic activity. Besides the formation of $CO_2$, low-temperature combustion of EtOH can lead to many other pathways that generate undesired byproducts, such as formaldehyde, acetaldehyde, acetic acid, diethyl ether, and ethylene, depending strongly on the catalyst and reaction conditions. A 0.65% $Pt/SiO_2$ catalyst with a Pt crystallite size of 24.6 nm shows stable performances in EtOH combustion at $120^{\circ}C$ even for 12 h, regardless of the space velocity allowed.

A Geochemical Boundary in the East Sea (Sea of Japan): Implications for the Paleoclimatic Record

  • Han, Sang-Joon;Hyun, Sang-Min;Huh, Sik;Chun, Jong-Hwa
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.167-175
    • /
    • 2002
  • Sediment from six piston cores from the East Sea (Sea of Japan) was analyzed for evidence of paleoceanographic changes and paleoclimatic variation. A distinct geochemical boundary is evident in major element concentrations and organic carbon content of most cores near the 10-ka horizon. This distinctive basal Holocene change is interpreted to be largely the result of changing sediment sources, an interpretation supported by TiO_2/Al_2O_3$ ratios. Organic carbon and carbonate contents also differ significantly between the Holocene and glacial intervals. The C/N ratio of organic matter is greater than 10 during the glacial period, but is less than 10 for the Holocene, suggesting that the influx of terrigenous organic matter was more volumetrically important than marine organic matter during glacial times. The chemical index of weathering (CIW) is higher for the Holocene than the glacial interval, and changes markedly at the basal Holocene geochemical boundary. Silt fractions are higher in the glacial interval, suggesting a strong effect of climate on silt particle transportation: terrigenous aluminosilicates and continental organic carbon transport were higher during glacial times than during the Holocene. Differences in sediment composition between the Holocene and glacial period are interpreted to have been climatically induced.