• 제목/요약/키워드: TiN Layer

검색결과 535건 처리시간 0.02초

D.C magnetron sputter법으로 증착된 TiAlN의 중간층에 따른 특성연구 (Characteristics of TiAlN Film on Different Buffer Layer by D.C Magnetron Sputter)

  • 김명호;이도재;이광민;김운섭;김민기;박범수;양국현
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.558-563
    • /
    • 2008
  • TiAlN films were deposited on WC-5Co substrates with different buffer layers by D.C. magnetron sputtering. The films were evaluated by microstructural observations and measuring of preferred orientation, hardness value, and adhesion force. As a process variable, various buffer layers were used such as TiAlN single layer, TiAlN/TiAl, TiAlN/TiN and TiAlN/CrN. TiAlN coating layer showed columnar structures which grew up at a right angle to the substrates. The thickness of the TiAlN coating layer was about $1.8{\mu}m$, which was formed for 200 minutes at $300^{\circ}$. XRD analysis showed that the preferred orientation of TiAlN layer with TiN buffer layer was (111) and (200), and the specimens of TiAlN/TiAl, TiAlN/CrN, TiAlN single layer have preferred orientation of (111), respectively. TiAlN single layer and TiAlN/TiAl showed good adhesion properties, showing an over 80N adhesion force, while TiAlN/TiN film showed approximately 13N and the TiAlN/CrN was the worst case, in which the layer was destroyed because of high internal residual stress. The value of micro vickers hardness of the TiAlN single layer, TiAlN/TiAl and TiAlN/TiN layers were 2711, 2548 and 2461 Hv, respectively.

${NH}_{3}$ 분위기에서 급속열처리에 의한 TiN/${TiSi}_{2}$ 이중구조막의 특성에 대한 고찰 (A Study on the Properties of TiN/${TiSi}_{2}$ Bilayer by a Rapid Thermal Anneal in ${NH}_{3}$ Ambient)

  • 이철진;성영권
    • 대한전기학회논문지
    • /
    • 제41권8호
    • /
    • pp.869-874
    • /
    • 1992
  • The physical and electrical properties of TiN/TiSiS12T bilayer were studied. The TiN/TiSiS12T bilayer was formed by rapid thermal anneal in NHS13T ambient after the Ti film was deposited on silicon substrate. The Ti film reacts with NHS13T gas to make a TiN layer at the surface and reacts with silicon to make a TiSiS12T layer at the interface respectively. It was found that the formation of TiN/TiSiS12T bilayer depends on RTA temperature. In this experiment, competitive reaction for TiN/TiSiS12T bilayer occured above $600^{\circ}C$. Ti-rich TiNS1xT layer and Ti-rich TiSiS1xT layer and Ti-rich TiSiS1xT layer were formed at $600^{\circ}C$. stable structure TiN layer TiSiS12T layer which has CS149T phase and CS154T phase were formed at $700^{\circ}C$. Both stable TiN layer and CS154T phase TiSiS12T layer were formed at 80$0^{\circ}C$. The thickness of TiN/TiSiS12T bilayer was increased as the thickness of deposited Ti film increased.

  • PDF

질소 분위기에서 순간역처리에 의해 형성시킨 $TiN/TiSi_2$ Contact Bsrrier Lauer의 특성 (Characteristics of $TiN/TiSi_2$ Contact Barrier Layer by Rapid Thermal Anneal in $N_2$ Ambient)

  • 이철진;허윤종;성영권
    • 대한전기학회논문지
    • /
    • 제41권6호
    • /
    • pp.633-639
    • /
    • 1992
  • The physical and electrical properties of TiN/TiSiS12T contact barrier were studied. The TiN/TiSiS12T system was formed by rapid thermal anneal in NS12T ambient after the Ti film was deposited on silicon substrate. The Ti film reacts with NS12T gas to make a TiN layer at the surface and reacts with silicon to make a TiSiS12T layer at the interface respectively. It was found that the formation of TiN/TiSiS12T system depends on RTA temperature. In this experiment, competitive reaction for TiN/TiSiS12T system occured above $600^{\circ}C$. Ti-rich TiNS1xT layer and Ti-rich TiSiS1xT layer were formed at $600^{\circ}C$. stable structure TiN layer and TiSiS1xT layer which has CS149T phase and CS154T phase were formed at $700^{\circ}C$. Both stable TiN layer and CS154T phase TiSiS12T layer were formed at 80$0^{\circ}C$. The thickness of TiN/TiSiS12T system was increased as the thickness of deposited Ti film increased.

  • PDF

아크이온 플레이팅법으로 WC-Co에 증착된 TiN 및 TiAlN박막의 충격특성 비교 (Comparative study on impact behavior of TiN and TiAlN coating layer on WC-Co substrate using Arc ion Plating Technique)

  • 윤순영;류정민;윤석영;김광호
    • 한국표면공학회지
    • /
    • 제35권6호
    • /
    • pp.408-414
    • /
    • 2002
  • TiN and TiAlN coating layer were deposited on WC-Co steel substrates by an arc ion plating(AIP) technique. The crystallinity and morphology for the deposited coating layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The impact behaviors of the deposited TiN and TiAlN coating layer were investigated with a ball-on-plate impact tester. Beyond $10^2$ impact cycle, TiAlN coating layer showed superior impact wear resistance compared to TiN coating layer. On the other hand, both TiN and TiAlN coating layers started to be partially failed between $10^2$ and $10^3$ impact cycle. Above $10^3$ impact cycle, TiN and TiAlN coating layers showed similar impact behavior because of the substrate effect.

TiCN 및 TiN/TiCN 박막의 구조와 피로거동 (Structure & Fatigue Behavior of TiCN and TiN/TiCN Thin Films)

  • 백창현;홍주화;위명용;강희재
    • 열처리공학회지
    • /
    • 제13권5호
    • /
    • pp.324-329
    • /
    • 2000
  • Microstructure, mechanical and fatigue behaviors of TiCN and TiN/TiCN thin films, deposited on quenched and tempered STD61 tool steel, were investigated by using XRD, XPS, hardness, adhesion and fatigue tests. The TiCN thin film is grown along the (100), (111) orientation, whereas the TiN/TiCN thin film is grown along the (111) orientation. The preferred orientation of TiN/TiCN thin film strongly depends on the TiN buffer layer whose orientation is (111), as is well-known. The TiN/TiCN thin film showed the higher adhesion compared with TiCN single layer because the TiN buffer layer, having good toughness, reduces the effects of the lower hardness of substrate. In the high cycle tension-tension fatigue test, the fatigue life of the TiCN and the TiN/TiCN coated steel increased approximately two to four times and five to nine times respectively compared with uncoated specimens. The TiN buffer layer in multilayer thin films plays an important role in reducing residual stress and fatigue crack initiation, and then in restraining the fatigue propagation.

  • PDF

HVPE(Hydride Vapor Phase Epitaxiy) 성장법으로 Ti metal mask를 이용한 GaN 성장연구 (GaN Grown Using Ti Metal Mask by HVPE(Hydride Vapor Phase Epitaxiy))

  • 김동식
    • 전자공학회논문지 IE
    • /
    • 제48권2호
    • /
    • pp.1-5
    • /
    • 2011
  • HVPE법으로 $3{\mu}m$의 GaN epi를 성장하고 이 위에 DC 마그네트론 Sputter를 이용하여 Ti stripe 패턴 형성하였으며 다시 HVPE를 이용하여 $120{\mu}m$ ~ $300{\mu}m$ 두께의 GaN를 overgrowth하였다. 성장된 GaN는 SEM 측정으로 Ti 패턴한 부분에서 void가 관찰되었고 보다 두꺼운 GaN를 성장시에는 크랙이 void를 따라 발생할 수 있음을 확인하였으며 XRD측정으로 FWHM은 188 arcsec로 측정되었다. 성장전의 GaN epi와의 반치폭을 비교하였을 때 패턴에 사용된 Ti는 overgrowth시 결정성에는 크게 영향을 주지 않는다는 것을 확인하였다.

고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성 (Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC)

  • 한춘수;채길병;이창래;최대규;심중표
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.118-127
    • /
    • 2012
  • 고분자전해질 연료전지용 분리판 소재로 스텐레스 강의 내식성과 전기전도성을 향상시키기 위해 표면을 TiN(titanium nitride) 또는 Ti/TiN(titanium/titanium nitride)으로 코팅하여 연료전지 운전환경에서 표면 코팅층의 물성 변화를 조사하였다. 200시간의 연료전지 운전에서 표면 코팅층의 부식, 균열(crack), 박리, 표면 화학조성 변화 등을 분석하여 코팅된 TiN 또는 Ti/TiN 박막의 역할을 규명하고자 하였다. 스텐레스 강 분리판의 전기전도도와 부식저항성은 소재 표면에 질화층 박막을 코팅함으로써 증가하였으나 연료전지 환경하에서 운전시 코팅된 박막의 부식과 박리현상이 SUS316L-Ti/TiN을 제외하고 현저히 발생하였다. TiN 코팅층과 하부 기재 사이에 Ti 중간층을 도입함으로써 TiN 박막의 밀착성이 향상되고 또한 코팅층의 두께 증가로 부식 위험성이 감소하는 것을 관찰하였다.

D. C. 마그네트론 스퍼터링에 의한 증착조건이 TiN다층박막의 밀착력에 미치는 영향 (The effect of deposition conditions on the adhesion strength of TiN multilayer by D. C. magnetron sputtering)

  • 김선규;유정광;이건환;권식철
    • 한국표면공학회지
    • /
    • 제29권4호
    • /
    • pp.261-267
    • /
    • 1996
  • The characteristics and adhesion strength of TiN layer deposited by D. C. magnetron sputtering were investigated. Three types of TiN layers were deposited on STS304 stainless steel. Scratch tests were performed to determine the effect of deposition temperature, the thickness of coated TiN layer and the titanium inter-layer on the adhesion strength. TiN multilayer with titanium inter-layer showed the highest critical load in the deposition temperature range of $25^{\circ}C$ to $300^{\circ}C$. Adhesion strength of TiN multilayer with titanium inter-layer was raised from 15N to 20N by raising deposition temperature from $25^{\circ}C$ to $400^{\circ}C$. Adhesion strength was raised from 18N to 38N by increasing the thickness of outer layer of TiN multilayer from 2.1 $\mu\textrm{m}$ to 9.5 $\mu\textrm{m}$.

  • PDF

TiO2/Si3N4/Ag/Si3N4/TiO2 다층구조에서 Si3N4 버퍼층이 투과율에 미치는 영향 (Effect of Si3N4 Buffer Layer on Transmittance of TiO2/Si3N4/Ag/Si3N4/TiO2 Multi Layered Structure)

  • 이서희;장건익
    • 한국전기전자재료학회논문지
    • /
    • 제25권1호
    • /
    • pp.44-47
    • /
    • 2012
  • The $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ multi layered structure was designed for the possible application of transparent electrodes in PDP (Plasma Display Panel). Multi layered film was deposited on a glass substrate at room temperature by DC/RF magnetron sputtering system and EMP (Essential Macleod Program) was adopted to optimize the optical characteristics of film. During the deposition process, the Ag layer in $TiO_2/Ag/TiO_2$ became heavily oxidized and the filter characteristic was degraded easily. In thus study, Si3N4 layer was used as a diffusion buffer layer between $TiO_2$ and Ag. in order to prevent the oxidation of Ag layer in $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ structure. It was confirmed that $Si_3N_4$ layer is one of candidate materials acting as diffusin barrier between $TiO_2/Ag/TiO_2$.