• Title/Summary/Keyword: TiC-Ni

Search Result 548, Processing Time 0.045 seconds

Electrochemical Properties of LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+ Synthesized by Combustion Method (연소법으로 합성한 LiNi1-yMyO2(M=Zn2+, Al3+, and Ti4+ 전기화학적 특성)

  • Kwon, Ikhyun;Song, Myoungyoup
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.276-281
    • /
    • 2005
  • $LiNi_{1-y}M_{y}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+},\;0.000\{\le}y{\le}0.100)$ were synthesized by the combustion method by calcining in $O_{2}$ stream at $750^{\circ}C$ for 36 h. XRD analyses, observation by FE-SEM and measurement of the variation of discharge capacity with the number of cycles were carried out. The composition $LiNi_{0.99}M_{0.01}O_{2}(M=Zn^{2+},\;Al^{3+},\;and\;Ti^{4+})$ of all the compositions showed relatively good electrochemical properties. $LiNi_{0.99}M_{0.01}O_{2}$ exhibited poor crystallinity and $LiNi_{0.99}M_{0.01}O_{2}$ showed the cation mixing of large fraction. $LiNi_{0.99}M_{0.01}O_{2}$ with improved cycling performance showed good crystallinity and the cation mixing of small fraction.

Fabrication of Ni-AC/TiO2Composites and their Photocatalytic Activity for Degradation of Methylene Blue

  • Oh, Won-Chun;Son, Joo-Hee;Zhang, Kan;Meng, Ze-Da;Zhang, Feng-Jun;Chen, Ming-Liang
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Activated carbon modified with nickel (Ni-AC) was employed the for preparation of Ni-activated carbon/$TiO_2$ (Ni-AC/$TiO_2$) composites. The $N_2$ adsorption data showed that the composites had a decreased surface area compared with pristine AC. This indicated blocking of the micropores on the surface of the AC, which was further supported by observation via SEM. XRD results showed that the Ni-AC/$TiO_2$ composite contained a mixed anatase and rutile phase while the untreated AC/$TiO_2$ contained only a typical single and clear anatase phase. EDX results showed the presence of C, O, and Ti with Ni peaks on the composites of Ni-AC/$TiO_2$. Subsequently, the photocatalytic effects on methylene blue (MB) were investigated. The improved decomposition of MB showed the combined effects of adsorptions and photo degradation. In particular, composites treated with Ni enhanced the photo degradation behaviors of MB.

Synthesis of NiO and TiO2 Combined SiC Matrix Nanocomposite and Its Photocatalytic MB Degradation

  • Zambaga, Otgonbayar;Jun Hyeok, Choi;Jo Eun, Kim;Byung Jin, Park;Won-Chun, Oh
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.458-465
    • /
    • 2022
  • Interest in the use of semiconductor-based photocatalyst materials for the degradation of organic pollutants in a liquid phase has grown, due to their excellent performance and response to the light source. Herein, we fabricated a NiO-SiC-TiO2 ternary structured photocatalyst which had reduced bandgap energy, with strong activation under UV-light irradiation. The synthesized samples were examined using XRD, SEM, EDX, TEM, DRS, EIS techniques and photocurrent measurement. The results confirmed that the two types of metal oxides were well bonded to the SiC fiber surface. The junction of the new photocatalyst exhibited a large number of photoexcited electrons and holes. The holes tended to oxidize the water and form a hydroxyl radical, which promoted the decomposition of methylene blue. The close contact between the 2D SiC fiber and metal oxide semiconductors expanded the scope of absorption wavelength, and enhanced the usability of the ternary photocatalyst for the degradation of methylene blue. Among three synthesized samples, the NiO-SiC-TiO2 showed the best photocatalytic effect, and was considered to have excellent photoelectron transfer due to the synergy effect between the metal oxide and SiC.

Formation of Nickel Silicide from Atomic Layer Deposited Ni film with Ti Capping layer

  • Yun, Sang-Won;Lee, U-Yeong;Yang, Chung-Mo;Na, Gyeong-Il;Jo, Hyeon-Ik;Ha, Jong-Bong;Seo, Hwa-Il;Lee, Jeong-Hui
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.193-198
    • /
    • 2007
  • The NiSi is very promising candidate for the metallization in 60nm CMOS process such as FUSI(fully silicided) gate and source/drain contact because it exhibits non-size dependent resistance, low silicon consumption and mid-gap workfunction. Ni film was first deposited by using ALD (atomic layer deposition) technique with Bis-Ni precursor and $H_2$ reactant gas at $220^{\circ}C$ with deposition rate of $1.25{\AA}/cycle$. The as-deposited Ni film exhibited a sheet resistance of $5{\Omega}/{\square}$. RTP (repaid thermal process) was then performed by varying temperature from $400^{\circ}C$ to $900^{\circ}C$ in $N_2$ ambient for the formation of NiSi. The process window temperature for the formation of low-resistance NiSi was estimated from $600^{\circ}C$ to $800^{\circ}C$ and from $700^{\circ}C$ to $800^{\circ}C$ with and without Ti capping layer. The respective sheet resistance of the films was changed to $2.5{\Omega}/{\square}$ and $3{\Omega}/{\square}$ after silicidation. This is because Ti capping layer increases reaction between Ni and Si and suppresses the oxidation and impurity incorporation into Ni film during silicidation process. The NiSi films were treated by additional thermal stress in a resistively heated furnace for test of thermal stability, showing that the film heat-treated at $800^{\circ}C$ was more stable than that at $700^{\circ}C$ due to better crystallinity.

  • PDF

Interdiffusion in Cu/Capping Layer/NiSi Contacts (Cu/Capping Layer/NiSi 접촉의 상호확산)

  • You, Jung-Joo;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.463-468
    • /
    • 2007
  • The interdiffusion characteristics of Cu-plug/Capping Layer/NiSi contacts were investigated. Capping layers were deposited on Ni/Si to form thermally-stable NiSi and then were utilized as diffusion barriers between Cu/NiSi contacts. Four different capping layers such as Ti, Ta, TiN, and TaN with varying thickness from 20 to 100 nm were employed. When Cu/NiSi contacts without barrier layers were furnace-annealed at $400^{\circ}C$ for 40 min., Cu diffused to the NiSi layer and formed $Cu_3Si$, and thus the NiSi layer was dissociated. But for Cu/Capping Layers/NiSi, the Cu diffusion was completely suppressed for all cases. But Ni was found to diffuse into the Cu layer to form the Cu-Ni(30at.%) solid solution, regardless of material and thickness of capping layers. The source of Ni was attributed to the unreacted Ni after the silicidation heat-treatment, and the excess Ni generated by the transformation of $Ni_2Si$ to NiSi during long furnace-annealing.

Micorstructure and Microwave Dielectric Propertics of Ni-doped $(Zr_{0.8}Sn_{0.2})TiO_4$ Ceramics

  • Lee, Dal-Won;Sahn Nahm;Kim, Myong-Ho;Byun, Jae-Dong
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.162-166
    • /
    • 1996
  • The effects of NiO addition on the microstructure and microwave dielectric properties of ($Zr_{08}Sn_{02}$)$TiO_4$ (ZST) were investigated. With the NiO addition, a higher density of ZST ceramics than 95% of the theoretical values has been obtained in the sintering temperature range of 1400 to 150$0^{\circ}C$. Energy dispersive X-ray spectrometry (EDS) analysis of sintered specimen shows the presence of second phase at grain boundaries, which is considered to be $NiTiO_3$. Dielectric constant of the specimen is found to increase linearly with density. Q-values and TC$_r$ decrease with increasing NiO content. The variation of dielectric properties with NiO content is discussed in terms of the second phase. The ZST ceramics with 0.25 wt% NiO showed ${\varepsilon}_{\gamma}$=38, Q=7000 at GHz and TC$\gamma$=-0.5 ppm/$^{\circ}C$, comparable with the values obtained by the previous investigations.

  • PDF

Electrical and mechanical properties of NiO doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZrO$_3$-ceramics (NiO-Doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZr$_3$-O세라믹스의 전기 및 기계적 특성에 관한 연구)

  • 나은상;김윤호;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2000
  • Dielectric properties, piezoelectric properties and mechanical properties of NiO-doped Pb($(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ ceramics were investigated. Powders, prepared by columbite precursor method, were cold pressed and sintered at temperature ranging from $1100^{\circ}C$ to $1250^{\circ}C$. Dielectric constant and piezoelectric constant increased with amount of NiO up to 1 mol% and then decreased with further addition of NiO. It seems that NiO acts as a sintering aid at the sintering temperatures of $1150^{\circ}C$. When the samples were sintered at temperature above $1200^{\circ}C$, however, both dielectric constant and electromechanical coupling factor decreased and mechanical quality coefficient increased with addition of NiO. Hardness and fracture toughness of PNN-PT-PZ increased with addition of NiO up to 1 mol%, and then decreased slightly with further addition of NiO. These results showed that dielectric properties, piezoelectric properties and mechanical properties of PNN-PT-PZ system seemed to be closely related with microstructural factors such as grain size, bulk density and the amount of second phase.

  • PDF

Inverse effect of Nickel modification on photoelectrochemical performance of TiNT/Ti photoanode (TiNT/Ti 광아노드의 광전기화학 특성에 미치는 Ni 금속의 영향)

  • Lee, JeongRan;Choi, HaeYoung;Shinde, Pravin S.;Go, GeunHo;Lee, WonJae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.100-100
    • /
    • 2011
  • Nanomaterial architecture with highly ordered, vertically oriented $TiO_2$ nanotube arrays shows a good promise for diverse technological applications. As inspired from the literature reports that Nickel modification can improve the photocatalytic activity of $TiO_2$, it was planned to coat Ni into the $TiO_2$ matrix. In this study, first $TiO_2$ nanotubes(TiNTs) were prepared by anodization (60V,3min) in HF-free aqueous electrolyte on ultrasonically cleaned polished titanium sheet substrates ($1{\times}7cm^2$). The typical thickness of the sintered TiNT ($500^{\circ}C$for10min) was ~1 micronas confirmed from the FESEM study. In the next part, as-anodized and sintered TiNT/Ti photoanodes were used to coat Ni by AC electrodeposition from aqueous 0.1M nickel sulphate solution. During AC electrodeposition, conditions such as 1V DC offset voltage, 9V amplitude (peak-to-peak) and 750 Hz frequency were fixed constant and the deposition time was varied as 0.5 min, 1 min, 2 min and 10 min. The photoelectrochemical performance of pristine and Ni modified TiNT/Ti photoanodes was measured in 1N NaOH electrolyte under 1 SUN illumination in the potential range of -1V and 1.2V versus Ag/AgCl reference electrode. The photocurrent performance of TiNT/Ti photoanode decreased upon Ni modification and the results were confirmed after repeated experiments. This suggests us that Ni modification inhibits the photoelectrochemical performance of $TiO_2$ nanotubes.

  • PDF

The Effect of Ageing on the Transformation Behavior of $Ti-50.1at\%$ Ni Alloy(I) ($Ti-50.1at\%$ Ni합금의 변태거동에 미치는 시효처리의 영향(I))

  • Woo Heung-Sik;Park Sung-Bum;Kang Bong-Su;Kim Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.1-7
    • /
    • 2004
  • This study investigated the effects of aging on the transformation behavior of $Ti-50.1at\%$ Ni alloy by means of differential scanning calorimetry. It was found that aging in the temperature range of $350^{\circ}C\~550^{\circ}C$ induced complex transformation behavior, involving the R-phase and multiple-stage martensitic transformation. Usually aged Ni-rich NiTi alloys undergo martensitic transformation on cooling from high temperatures in two step : B2 to R and then R to Bl9'(normal behavior). But under certain ageing conditions, the transformation can also occur in three or more step(unusual multiple step behavior). In the present study we use differential seaming calorimetry(DSC) for a systematic investigation of the evolution of transformation behavior with ageing temperature and time.

Ru-NiOx nanohybrids on TiO2 support prepared by impregnation-reduction method for efficient hydrogenation of lactose to lactitol

  • Mishra, Dinesh Kumar;Dabbawala, Aasif A.;Truong, Cong Chien;Alhassan, Saeed M.;Jegal, Jonggeon;Hwang, Jin Soo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.325-334
    • /
    • 2018
  • Lactose is a reducing disaccharide consisting of two different monosaccharides such as galactose and glucose. The hydrogenation of lactose to lactitol is a formidable challenge because it is a complex process and several side products are formed. In this work, we synthesized Ru-Ni bimetallic nanohybrids as efficient catalysts for selective lactose hydrogenation to give selective lactitol. Ru-Ni bimetallic nanohybrids with $Ru-NiO_x$ (x = 1, 5, and 10 wt%) are prepared by impregnating Ru and Ni salts precursors with $TiO_2$ used as support material. Ru-Ni bimetallic nanohybrids (represented as $5Ru-5NiO/TiO_2$) catalyst is found to exhibit the remarkably high selectivity of lactitol (99.4%) and turnover frequency i.e. ($374h^{-1}$). In contrast, monometallic $Ru/TiO_2$ catalyst shows poor performance with ($TOF=251h^{-1}$). The detailed characterizations confirmed a strong interaction between Ru and NiO species, demonstrating a synergistic effect on the improvement on lactitol selectivity. The impregnation-reduction method for the preparation of bimetallic $Ru-NiO/TiO_2$ catalyst promoted Ru nanoparticles dispersed on NiO and intensified the interaction between Ru and NiO species. $Ru-NiO/TiO_2$ efficiently catalyzed the hydrogenation of lactose to lactitol with high yield/selectivity at almost complete conversion of lactose at $120^{\circ}C$ and 55 bar of hydrogen ($H_2$) pressure. Moreover, $Ru-NiO/TiO_2$ catalyst could also be easily recovered and reused up to four runs without notable change in original activity.