• Title/Summary/Keyword: TiB2

Search Result 1,117, Processing Time 0.029 seconds

Observation on the Microstructures of Cu-TiB2 Composites with Wear Behavior (Cu-TiB2 복합재료의 마모거동에 따른 미세조직 관찰)

  • Lee, Tae-Woo;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.511-515
    • /
    • 2006
  • The dispersion hardened $Cu-TiB_2$ composites are a promising candidate for applications as electrical contact materials. The $Cu-TiB_2$ composites for electrical contact materials can reduce material cost and resource consumption caused by wear, due to their good mechanical and electrical properties. In this study, we investigated the wear phenomenon for $Cu-TiB_2$ composites fabricated with hot extrusion, by varying particle sizes and volume fractions of $TiB_2$. The wear tests were performed under the dry sliding condition with a fixed total sliding distance of 40 m. The contact loads at a constant speed of 3.5 Hz were 20, 40, 60, and 80 N. The friction coefficients and wear losses were measured during wear tests. Worn surfaces and wear debris after wear tests were investigated using the scanning electron microscope and the optical microscope. The microstructures of interface between Cu matrix and $TiB_2$ particle before and after wear tests were studied by the transmission electron microscope.

Crystallization Kinetics of $PbO-TiO_2-SiO_2-B_2O_3$ Glasses by DSC (DSC에 의한 $PbO-TiO_2-SiO_2-B_2O_3$계 유리의 결정화 속도)

  • 손명모;이승호;이헌수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1331-1336
    • /
    • 1995
  • The glass-ceramics for ferro-electric were made from compositions of 70PbO.16TiO2.8SiO2.4B2O3.2AlPO4 (wt%) and 67.5PbO.20TiO2.8.5SiO2.2B2O3.2AlPO4 (wt%). The crystallization kinetics for PbTiO3 crystalline phase formation from glass was studied using non-isothermal DSC techniques. The values of activation energy, ΔE using variables of heating rate and temperature were calculated at various reaction fractions obtained from peak area over DSC. The results indicated that activation energy was lowest at 60% reaction fractions and the activation energy of glass containing 20.0 wt% TiO2 is higher than that of glass containing 16.0 wt% TiO2. The crystallization mechanism was three dimensional growth (n=4).

  • PDF

Preparation of Ag2Se-Graphene-TiO2 Nanocomposite and its Photocatalytic Degradation (Rh B)

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.388-394
    • /
    • 2017
  • Here, utilizing rhodamine B (RhB) as standard color dye, we examined the photo degradation proficiency of $Ag_2Se-Graphene-TiO_2$ nanocomposites under visible light irradiation; samples were prepared by ultrasonication techniques and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic investigation and UV-Vis absorbance spectra examination. Our outcomes demonstrate that the $Ag_2Se-G-TiO_2$ nanocomposite showed significant photodegradation efficiency as compared with those of $TiO_2-G$ and $Ag_2Se-G$, with around 85.2% of Rhodamine B (RhB) degraded after 180 min. It is concluded that the $Ag_2Se-G-TiO_2$ nanocomposite is a competent candidate for dye pollutants.

Effects of the Sintering Atmosphere and Ni Content on the Liquid-phase Sintering of $TiB_2$-Ni

  • Suk-Joong L. Kang;Baung, Jin-Chul;Park, Yeon-Gyu;Kang, Eul-Son;Baek, Yong-Kee;Jung, Sug-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.207-211
    • /
    • 2001
  • The effects of the sintering atmosphere and Ni content on t도 densification of TiB$_2$-Ni have been investigated. TiB$_2$powder compacts containing 10, 20, and 30 wt% Ni were liquid-phase sintered at 1500-1$700^{\circ}C$ in vacuum or in flowing Ar. The densification was enhanced as Ni content increased. For a given Ni content, the densification was faster in compacts in compacts with larger grain size. These densification behaviors agree well with the prediction of the recently developed pore-filling theory. For samples containing high Ni contents, 80TiB$_2$-20Ni and 70TiB$_2$-30Ni, the densification was faster in vacuum than in Ar. In particular, 70TiB$_2$-30Ni was fully densified at 1$700^{\circ}C$ for 60min in vacuum. The suppressed densification in Ar was due to the entrapped Ar in the isolated pores. On the other hand, for 90TiB$_2$-10Ni, the Ar-sintering resulted in higher densification than did the vacuum-sintering. This result was attributed to the suppression of Ni volatilization by the Ar in the furnace and a retarded isolation of pores due to the limited amount of liquid in the sample. Therefore, vacuum sintering is recommended for the preparation of TiB$_2$-Ni with a high Ni content while Ar sintering is recommended for the preparation of TiB$_2$-Ni with a low Ni content.

  • PDF

Fabrication and Characterization of $TiB_2$-based Cermet Using SUS316L Metal Binder (SUS316L결합상을 이용한 $TiB_2$ 서멧합금의 제조와 특성평가)

  • An, Dong-Gil
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.838-844
    • /
    • 2000
  • For the fabrication of titanium diboride($TiB_2$)- based cermet as applications of cutting tools and wear resistant materials, a binder metal with good mechanical properties and sinterability is essential. In this study, SUS316L was chosen for the binder metal to obtain a new $TiB_2$ cermet with superior hardness and toughness.$TiB_2$-SUS316L cermets were densified to relative density of more than 99% by pressureless sintering at temperature above $1650^{\circ}C$ The flexural strength was up to 1290MPa at 10vo1%SUS316L cermet in spite of the formation of $Fe_2$B phase during the sintering. The fracture toughness was obtained up to $6MPam^{1/2}$ with Victors hardness over 18Gpa. These hardness and fracture toughness combinations are better than those of conventional cermet. The high temperature strength remarkably decreased by the plastic deformations of SUS316L binder phase at nearby $800^{\circ}C$ .

  • PDF

Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys (기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성)

  • 표성규
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.98-110
    • /
    • 1998
  • $Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

  • PDF

Fabrication of $TiB_2$-W Composite by SHS Method (SHS 법에 의한 $TiB_2$-W 복합재료 제조에 대한 연구)

  • 이형복;강석원;이재원;박원석
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.9
    • /
    • pp.915-920
    • /
    • 2000
  • 합성과 동시에 소결이 이루어지는 HPCS법을 이용하여 TiB$_2$-W 복합체를 텅스텐의 함량 변화에 다라 제조하여 이 복합체의 미세구조 및 기계적 물성에 대하여 연구하였다. 이 연구 결과, 텅스텐의 함량증가에 따라 삼성분 붕화 화합물인 TiWB$_2$의 상이 증가하였으며, 이 상의 증가에 따라 기계적 물성이 향상되었다. 60 MPa의 압력과 130$0^{\circ}C$, 3000 A에서 소결한 TiB$_2$-30vol% W 복합체에서 상대밀도, 강도, 경도 값은 각각 97.2%, 411.5 MPa, 22.36 GPa로 가장 우수한 물성을 얻을 수 있었다.

  • PDF

Enhanced Photocatalytic Properties of Visible Light Responsive La/TiO2-Graphene Composites for the Removal of Rhodamin B in Water

  • Areerob, Yonrapach;Oh, Won-Chun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.168-178
    • /
    • 2017
  • $La/TiO_2$ - graphene composites were synthesized in this study, and applied to the photocatalytic degradation of Rhodamine B (RhB) under UV-visible light irradiation. X-ray diffraction (XRD), surface analysis, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) analysis demonstrated that $La/TiO_2$ nanoparticles were well distributed on the surface of graphene, and formed the heterostructure of $La/TiO_2$-graphene. Compared to the pure $TiO_2$, $La/TiO_2$-graphene composites displayed much higher photocatalytic activities in RhB degradation under UV-visible light irradiation. The photocatalytic data of $La/TiO_2$-graphene composites exhibit extended light absorption in the visible light region, and possess better charge separation capability than that of pure $TiO_2$. The high photocatalytic activity was attributed to the composite's high adsorptivity, extended light absorption, and increased charge separation efficiency, due to the excellent electrical properties of graphene, and the large surface contact between graphene and $La/TiO_2$ nanoparticles.

산화물 전극을 이용한 Rhodamine B의 탈색

  • Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.370-374
    • /
    • 2007
  • 난분해성 유기물 처리에 적절한 불용성 전극을 선정하고 성능을 평가하기 위하여 1-3 성분계 전극을 이용하여 양이온 염료인 Rhodamine B (RhB)의 전기분해 처리에서 다음의 결론을 얻었다. 1) 반응 2분 후 RhB 농도를 고찰한 결과 RhB 농도감소는 Ru-Sn-Ti/Ti ${\fallingdotseq}$ Ru-Sn-Sb/Ti > Ir-Sn-Sb/Ti > Sn-Sb/Ti > Ru/Ti > Ir/Ti > Pt/Ti의 순서로 나타나 3성분계 > 2성분계 > 1성분계 전극의 순서로 나타났다. Ru를 사용한 전극이 Ir을 사용한 전극보다 1성분계와 3성분계 모두 성능이 우수한 것으로 나타났다. 기존 전극으로 가장 많이 사용되고 있는 Pt 전극의 성능은 가장 떨어지는 것으로 나타났다. 2) RhB 초기 농도감소 속도는 전극 간격이 좁은 것이 유리한 것으로 나타났으나 최종 농도는 비슷하였다. 전극 간격이 좁을수록 전력 면에서 유리한 것으로 나타났다. 면적이 큰 전극이 초기 반응이 빠르고 나타났고 최종농도도 약간 낮은 것으로 나타났으나 차이는 크지 않았다. 면적이 좁은 경우 반응면적이 적지만 전류밀도가 높기 때문에 성능의 차이는 크지 않으나 면적이 적은 전극의 경우 요구 전력량이 높기 때문에 적절한 크기의 전극이 필요한 것으로 사료되었다.

  • PDF