DOI QR코드

DOI QR Code

Preparation of Ag2Se-Graphene-TiO2 Nanocomposite and its Photocatalytic Degradation (Rh B)

  • Ali, Asghar (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2017.04.25
  • Accepted : 2017.07.28
  • Published : 2017.09.30

Abstract

Here, utilizing rhodamine B (RhB) as standard color dye, we examined the photo degradation proficiency of $Ag_2Se-Graphene-TiO_2$ nanocomposites under visible light irradiation; samples were prepared by ultrasonication techniques and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic investigation and UV-Vis absorbance spectra examination. Our outcomes demonstrate that the $Ag_2Se-G-TiO_2$ nanocomposite showed significant photodegradation efficiency as compared with those of $TiO_2-G$ and $Ag_2Se-G$, with around 85.2% of Rhodamine B (RhB) degraded after 180 min. It is concluded that the $Ag_2Se-G-TiO_2$ nanocomposite is a competent candidate for dye pollutants.

Keywords

References

  1. R. Vinu and G. Madras, "Kinetics of Sonophotocatalytic Degradation of Anionic Dyes with Nano-$TiO_2$," Environ. Sci. Technol., 43 [2] 473-79 (2008). https://doi.org/10.1021/es8025648
  2. S. S. Martinez and E. V. Uribe, "Enhanced Sonochemical Degradation of Azure B Dye by the ElectroFenton Process," Ultrason. Sonochem., 19 [1] 174-78 (2012). https://doi.org/10.1016/j.ultsonch.2011.05.013
  3. R. Pelegrini, P. Peralta-Zamora, A. R. de Andrade, and J. Reyes, N. Duran, "Electrochemically Assisted Photocatalytic Degradation of Reactive Dyes," Appl. Catal., B, 22 [2] 83-90 (1999). https://doi.org/10.1016/S0926-3373(99)00037-5
  4. A. Konsowa, M. Ossman, Y. Chen, and J. C. Crittenden, "Decolorization of Industrial Wastewater by Ozonation Followed by Adsorption on Activated Carbon," J. Hazard. Mater., 176 [1] 181-85 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.010
  5. S. Won, S. Choi, B. Chung, D. Park, J. Park, and Y.-S. Yun, "Biosorptive Decolorization of Reactive Orange 16 Using the Waste Biomass of Corynebacterium Glutamicum," Ind. Eng. Chem. Res., 43 [24] 7865-69 (2004). https://doi.org/10.1021/ie049559o
  6. Y. M. Slokar and A. M. Le Marechal, "Methods of Decoloration of Textile Wastewaters," Dyes Pigm., 37 [4] 335-56 (1998). https://doi.org/10.1016/S0143-7208(97)00075-2
  7. Y. Xu, R. E. Lebrun, P.-J. Gallo, and P. Blond, "Treatment of Textile Dye Plant Effluent by Nanofiltration Membrane," Sep. Sci. Technol., 34 [13] 2501-19 (1999). https://doi.org/10.1081/SS-100100787
  8. R. Ahmad, P. K. Mondal, and S. Q. Usmani, "Hybrid UASFB-Aerobic Bioreactor for Biodegradation of Acid Yellow-36 in Wastewater," Bioresour. Technol., 101 [10] 3787-90 (2010). https://doi.org/10.1016/j.biortech.2009.12.116
  9. J. Madhavan, P. Maruthamuthu, S. Murugesan, and S. Anandan, "Kinetic Studies on Visible Light-Assisted Degradation of Acid Red 88 in Presence of Metal-Ion Coupled Oxone Reagent," Appl. Catal., B, 83 [1] 8-14 (2008). https://doi.org/10.1016/j.apcatb.2008.01.021
  10. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, "Stoichiometric Water Splitting into $H_2$ and $O_2$ Using a Mixture of Two Different Photocatalysts and an ${IO_{3}}^{-}/I^-$ Shuttle Redox Mediator under Visible Light Irradiation," Chem. Commun., 7 [23] 2416-17 (2001).
  11. K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, "A New Photocatalytic Water Splitting System under Visible Light Irradiation Mimicking a Z-Scheme Mechanism in Photosynthesis," J. Photochem. Photobiol., A, 148 [1] 71-7 (2002). https://doi.org/10.1016/S1010-6030(02)00070-9
  12. A. Oliva, O. Soli, R. Castro-Rodri, and P. Quintana, "Formation of the Band Gap Energy on CdS Thin Films Growth by Two Different Techniques," Thin Solid Films, 391 [1] 28-35 (2001). https://doi.org/10.1016/S0040-6090(01)00830-6
  13. L. B. Reutergadh and M. Iangphasuk, "Photocatalytic Decolourization of Reactive Azo Dye: A Comparison between $TiO_2$ and us Photocatalysis," Chemosphere, 35 [3] 585-96 (1997). https://doi.org/10.1016/S0045-6535(97)00122-7
  14. K. Moazzami, T. Murphy, J. Phillips, M. C. Cheung, and A. Cartwright, "Sub-Bandgap Photoconductivity in ZnO Epilayers and Extraction of Trap Density Spectra," Semicond. Sci. Technol., 21 [6] 717 (2006). https://doi.org/10.1088/0268-1242/21/6/001
  15. F. W. Wise, "Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement," Acc. Chem. Res., 33 [11] 773-80 (2000). https://doi.org/10.1021/ar970220q
  16. H. W. Nasution, E. Purnama, S. Kosela, and J. Gunlazuardi, "Photocatalytic Reduction of C$O_2$ on Copper-doped Titania Catalysts Prepared by Improved-Impregnation Method," Catal. Commun., 6 [5] 313-19 (2005). https://doi.org/10.1016/j.catcom.2005.01.011
  17. N. Murakami, D. Saruwatari, T. Tsubota, and T. Ohno, "Photocatalytic Reduction of Carbon Dioxide over Shape-Controlled Titanium (IV) Oxide Nanoparticles with Co-Catalyst Loading," Curr. Org. Chem., 17 [21] 2449-53 (2013). https://doi.org/10.2174/13852728113179990058
  18. O. Ishitani, C. Inoue, Y. Suzuki, and T. Ibusuki, "Photocatalytic Reduction of Carbon Dioxide to Methane and Acetic Acid by an Aqueous Suspension of Metal-Deposited $TiO_2$," J. Photochem. Photobiol., A, 72 [3] 269-71 (1993). https://doi.org/10.1016/1010-6030(93)80023-3
  19. W. S. Hummers Jr and R. E. Offeman, "Preparation of Graphitic Oxide," J. Am. Chem. Soc., 80 [6] 1339-39 (1958). https://doi.org/10.1021/ja01539a017
  20. D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. Alemany, W. Lu, and J. Tour, "Improved Synthesis of Graphene Oxide," ACS Nano, 4 [8] 4806-14 (2010). https://doi.org/10.1021/nn1006368
  21. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng, "Synthesis of Visible-Light Responsive Graphene Oxide/$TiO_2$ Composites with p/n Heterojunction," ACS Nano, 4 [11] 6425-32 (2010). https://doi.org/10.1021/nn102130m
  22. C. Naether, S. Scherb, and W. Bensch, "Bis [2,2'-(2-Aminoethylimino) Di (Ethylammonium)] Hexasulfidodistannate (IV) Dihydrate," Acta Crystallogr., Sect. E: Struct. Rep. Online, 59 [5] m280-82 (2003). https://doi.org/10.1107/S160053680300878X
  23. V. D. Das and D. Karunakaran, "Variations of Energy Gap, Resistivity, and Temperature Coefficient of Resistivity in Annealed ${\beta}$-$Ag_2$ Se Thin Films," Phys. Rev. B, 39 [15] 10872 (1989). https://doi.org/10.1103/PhysRevB.39.10872
  24. H. Cao, Y. Xiao, Y. Lu, J. Yin, B. Li, S. Wu, and X. Wu, "$Ag_2Se$ Complex Nanostructures with Photocatalytic Activity and Superhydrophobicity," Nano Res., 3 [12] 863-73 (2010). https://doi.org/10.1007/s12274-010-0057-x
  25. J. Zhan, X. Yang, S. Li, D. Wang, Y. Xie, and Y. Qian, "Synthesis of $Ag_2Se$ by Sonochemical Reaction of Se with $AgNO_3$ in Non-Aqueous Solvent," Int. J. Inorg. Mater., 3 [1] 47-9 (2001). https://doi.org/10.1016/S1466-6049(00)00089-1
  26. X.-Y. Zhang, H.-P. Li, X.-L. Cui, and Y. Lin, "Graphene/$TiO_2$ Nanocomposites: Synthesis, Characterization and Application in Hydrogen Evolution from Water Photocatalytic Splitting," J. Mater. Chem., 20 [14] 2801-6 (2010). https://doi.org/10.1039/b917240h
  27. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, "P25-Graphene Composite as a High Performance Photocatalyst," ACS Nano, 4 [1] 380-86 (2009). https://doi.org/10.1021/nn901221k
  28. S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus Jr, "Hydrothermal Synthesis of Graphene-$TiO_2$ Nanotube Composites with Enhanced Photocatalytic Activity," ACS Catal., 2 [6] 949-56 (2012). https://doi.org/10.1021/cs200621c
  29. B. Pejova, "Optical Phonons in Nanostructured Thin Films Composed by Zincblende Zinc Selenide Quantum Dots in Strong Size-Quantization Regime: Competition between Phonon Confinement and Strain-Related Effects," J. Solid State Chem., 213 22-31 (2014). https://doi.org/10.1016/j.jssc.2014.01.034
  30. T. Ghosh, J.-H. Lee, Z.-D. Meng, K. Ullah, C.-Y. Park, V. Nikam, and W.-C. Oh, "Graphene Oxide based CdSe Photocatalysts: Synthesis, Characterization and Comparative Photocatalytic Efficiency of Rhodamine B and Industrial Dye," Mater. Res. Bull., 48 [3] 1268-74 (2013). https://doi.org/10.1016/j.materresbull.2012.12.023
  31. V. Glazov, A. Pashinkin, and V. Fedorov, "Phase Equilibria in the Cu-Se System," Inorg. Mater., 36 [7] 641-52 (2000). https://doi.org/10.1007/BF02758413
  32. M. C. Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao, and E. A. Carter, "First Principles Scheme to Evaluate Band Edge Positions in Potential Transition Metal Oxide Photocatalysts and Photoelectrodes," Phys. Chem. Chem. Phys., 13 [37] 16644-54 (2011). https://doi.org/10.1039/c1cp22128k
  33. H. L. Zhuang and R. G. Hennig, "Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts," J. Phys. Chem. C, 117 [40] 20440-45 (2013). https://doi.org/10.1021/jp405808a
  34. Q. Xiang, J. Yu, and M. Jaroniec, "Synergetic Effect of $MoS_2$ and Graphene as Cocatalysts for Enhanced Photocatalytic $H_2$ Production Activity of $TiO_2$ Nanoparticles," J. Am. Chem. Soc., 134 [15] 6575-78 (2012). https://doi.org/10.1021/ja302846n
  35. A. C. Ferrari, "Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects," Solid State Commun., 143 [1] 47-57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
  36. W.-C. Chen, T.-C. Wen, and A. Gopalan, "Negative Capacitance for Polyaniline: An Analysis via Electrochemical Impedance Spectroscopy," Synth. Met., 128 [2] 179-89 (2002). https://doi.org/10.1016/S0379-6779(01)00667-1
  37. J. Kyriakopoulos, M. D. Tzirakis, G. D. Panagiotou, M. N. Alberti, K. S. Triantafyllidis, S. Giannakaki, K. Bourikas, C. Kordulis, M. Orfanopoulos, and A. Lycourghiotis, "Highly Active Catalysts for the Photooxidation of Organic Compounds by Deposition of [60] Fullerene onto the MCM-41 Surface: A Green Approach for the Synthesis of Fine Chemicals," Appl. Catal., B, 117 36-48 (2012).

Cited by

  1. $$\hbox {CuBO}_{2}$$CuBO2 nanonetwork: a novel and significant candidate for photocatalytic dye degradation vol.41, pp.5, 2018, https://doi.org/10.1007/s12034-018-1642-y
  2. Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.08
  3. Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4) nanoparticles for photocatalytic degradation of toxic organic dyes vol.242, pp.None, 2019, https://doi.org/10.1016/j.mseb.2019.03.012