• Title/Summary/Keyword: Ti3SiC2

Search Result 886, Processing Time 0.036 seconds

Fabrication and Properties of ZnSnO3 Piezoelectric Films Deposited by a Pulsed Laser Deposition (Pulsed Laser Deposition 방법으로 증착된 ZnSnO3 압전 박막의 성장과 특성 평가)

  • Park, Byeong-Ju;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.18-21
    • /
    • 2014
  • Because the Pb-based piezoelectric materials showed problems such as an environmental pollution. lead-free $O_3$ materials were studied in the present study. The $O_3$ thin films were deposited at $640^{\circ}C$ on $Pt/Ti/SiO_2$ substrate by pulsed laser deposition (PLD) and were annealed for 5 min at $750^{\circ}C$ using rapid thermal annealing (RTA) in nitrogen atmosphere. Samples annealed at $750^{\circ}C$ showed a smooth morphology and an improvement of the dielectric and leakage properties, as compared with as-grown samples. However, electrical properties of the $O_3$ thin films obtained in the present study should be improved for piezoelectric applications.

Fabrication of spectacle lens cutting materials (렌즈 절삭공구 재료의 제조)

  • Lee, Young-II
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.111-114
    • /
    • 2001
  • This paper presents the influence of the additive composition on flexural strength and hardness of SiC-TiC composites materials for spectacle lens cutting materials. The materials were hot-pressed at $1800^{\circ}C$ and subsequently annealed at $1910^{\circ}C$ for 3h. The heating rate was $15^{\circ}C/min$ and the cooling rate about $25^{\circ}C/min$ in from the sintering temperature to $1300^{\circ}C$. The growth of particles of spectacle lens cutting materials was analysed by SEM and crystalline phases were discussed by x-ray diffractometry. Typical fracture toughness and hardness of materials for spectacle lens cutting were $6.1MPa{\cdot}m^{1/2}$ and 14.9 GPa, respectively.

  • PDF

Low Temperature Sintering of PNN-PZT Ceramics and Its Electrical Properties (PNN-PZT 세라믹스의 저온 소결 및 전기적 특성 평가)

  • Lee, Myung-Woo;Kim, Sung-Jin;Yoon, Man-Soon;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1077-1082
    • /
    • 2008
  • To fabricate a multi-layered piezoelectrics/electrodes structure, the piezoelectrics should be sintered at the temperature lower than $950^{\circ}C$ to use the silver electrode, which is cheaper than the electrodes containing noble metals such as Pd and Pt. Therefore, in this study, we modified the composition of $Pb(Zr,Ti)O_3$-based material as $(Pb_{0.98}Cd_{0.02})(Ni_{1/3}Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}O_3$ to lower the sintering temperature and to improve the piezoelectric properties. Small amount of $MnCO_3$, $SiO_2$, and $Pb_3O_4$ were also added to lower the sintering temperature of the ceramic. The prepared raw powders were mixed by using a ball mill for 24 hours. And then the mixed powders were calcinated for 2 hours at $800^{\circ}C$. The calcinated powders were again crushed with the ball mill for 72 hours. The final powders were pressed for making the shape of ${\emptyset}15\;mm$ disk. The disk-type samples were sintered at temperature range of $850{\sim}950^{\circ}C$. The crystal phases of the sintered specimens were perovskite structure without secondary phases. All of the measured electrical properties such as electromechanical coupling coefficients ($k_p$), mechanical quality factors ($Q_m$), and piezoelectric charge constants ($d_{33}$) were decreased with decreasing the sintering temperatures. The electrical properties measured at the sample sintered at $950^{\circ}C$ were 54% of $k_p$, 503 of $Q_m$, and 390 pC/N of $d_{33}$, respectively. These properties were considered to be fairly good for the application of multi-layered piezoelectric generators or actuators.

Terahertz Generation and Detection Characteristics of InGaAs

  • Park, Dong-U;Han, Im-Sik;Kim, Chang-Su;No, Sam-Gyu;Ji, Yeong-Bin;Jeon, Tae-In;Lee, Gi-Ju;Kim, Jin-Su;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.161-161
    • /
    • 2012
  • 본 연구에서는 InGaAs을 이용한 테라헤르쯔(THz) 발생과 검출 특성을 GaAs에 의한 특성과 비교, 조사하였다. 고온성장(HTG, $530^{\circ}C$) InGaAs를 이용하여 photo-Dember (pD) 효과(표면방출)에 의한 THz 발생 특성을 조사하였으며, THz 검출 특성에는 저온성장(LTG, $530^{\circ}C$) InGaAs: Be을 이용하였다. HTG-InGaAs 기판 위에 패턴한 금속전극 (Ti/Au, ${\sim}500{\times}500{\mu}m$)의 가장자리에 Ti: Sapphire fs 펄스 레이저(30 ps/90 MHz)를 조사하여 LTG-GaAs 수신기(Rx)로 THz를 검출, 전류신호(a)와 Fourier transform (FT) 주파수 스펙트럼(b)을 얻었다. HTG-InGaAs에서 얻은 파형은 SI-GaAs에서와 거의 비슷한 모양이었으나, 주파수 범위(0.5~2 THz)는 SI-GaAs의 1~3 THz 보다 좁고 FT 스펙트럼의 세기는 약 1/8 정도로 낮았다. LTG-InGaAs 수신기 (Rx)의 안테나는 쌍극자 ($5/20{\mu}m$) 형태를 가지고 있으며, SI-GaAs Tx로 발생시킨 광원을 사용하여 THz 영역의 검출 특성을 조사하였다. HTG-InGaAs Tx 및 LTG-InGaAs Rx의 이득은 각각 약 $5{\times}10^{-8}$ A/W과 $2.5{\times}10^{-8}$ A/W인 것으로 분석되었다.

  • PDF

Influence of Substrate Temperature of SBN Ceramic Thin Film (SBN 세라믹 박막의 기판온도에 따른 영향)

  • Kim, Jin-Sa;Oh, Yong-Cheul;Shin, Cheol-Gi;Kim, Eung-Kwon;So, Byeong-Mun;Song, Min-Jong;Kim, Chung-Hyeok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.213-214
    • /
    • 2008
  • The $Sr_{0.7}Bi_{2.3}Nb_2O_9$(SBN) thin films are deposited on Pt-coated electrode(Pt/Ti/SiO2/Si) using RF sputtering method at various substrate temperature. The optimum conditions of RF power and Ar/O2 ratio were 60[W] and 70/30, respectively. The crystallinity of SBN thin films were increased with increase of substrate temperature in the temperature range of 100~400[$^{\circ}C$]. The capacitance of SBN thin films were increased with the increase of substrate temperature.

  • PDF

Co-Deposition법을 이용한 Yb Silicide/Si Contact 및 특성 향상에 관한 연구

  • Gang, Jun-Gu;Na, Se-Gwon;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.438-439
    • /
    • 2013
  • Microelectronic devices의 접촉저항의 향상을 위해 Metal silicides의 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 지난 수십년에 걸쳐, Ti silicide, Co silicide, Ni silicide 등에 대한 개발이 이루어져 왔으나, 계속적인 저저항 접촉 소재에 대한 요구에 의해 최근에는 Rare earth silicide에 관한 연구가 시작되고 있다. Rare-earth silicide는 저온에서 silicides를 형성하고, n-type Si과 낮은 schottky barrier contact (~0.3 eV)를 이룬다. 또한, 비교적 낮은 resistivity와 hexagonal AlB2 crystal structure에 의해 Si과 좋은 lattice match를 가져 Si wafer에서 high quality silicide thin film을 성장시킬 수 있다. Rare earth silicides 중에서 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 낮은 schottky barrier 응용에서 쓰이고 있다. 이로 인해, n-channel schottky barrier MOSFETs의 source/drain으로써 주목받고 있다. 특히 ytterbium과 molybdenum co-deposition을 하여 증착할 경우 thin film 형성에 있어 안정적인 morphology를 나타낸다. 또한, ytterbium silicide와 마찬가지로 낮은 면저항과 electric work function을 갖는다. 그러나 ytterbium silicide에 molybdenum을 화합물로써 높은 농도로 포함할 경우 높은 schottky barrier를 형성하고 epitaxial growth를 방해하여 silicide film의 quality 저하를 야기할 수 있다. 본 연구에서는 ytterbium과 molybdenum의 co-deposition에 따른 silicide 형성과 전기적 특성 변화에 대한 자세한 분석을 TEM, 4-probe point 등의 다양한 분석 도구를 이용하여 진행하였다. Ytterbium과 molybdenum을 co-deposition하기 위하여 기판으로 $1{\sim}0{\Omega}{\cdot}cm$의 비저항을 갖는 low doped n-type Si (100) bulk wafer를 사용하였다. Native oxide layer를 제거하기 위해 1%의 hydrofluoric (HF) acid solution에 wafer를 세정하였다. 그리고 고진공에서 RF sputtering 법을 이용하여 Ytterbium과 molybdenum을 동시에 증착하였다. RE metal의 경우 oxygen과 높은 반응성을 가지므로 oxidation을 막기 위해 그 위에 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, 진공 분위기에서 rapid thermal anneal(RTA)을 이용하여 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium silicides를 형성하였다. 전기적 특성 평가를 위한 sheet resistance 측정은 4-point probe를 사용하였고, Mo doped ytterbium silicide와 Si interface의 atomic scale의 미세 구조를 통한 Mo doped ytterbium silicide의 형성 mechanism 분석을 위하여 trasmission electron microscopy (JEM-2100F)를 이용하였다.

  • PDF

Ferroelectric $SrBi_2Ta_2O_9$ Thin Films by Liquid-Delivery Metalorganic Chemical Vapor Deposition using $Sr[Ta(OEt)_5(dmae)]_2$ and $Bi(C_6H_5)_3$

  • Shin, Wonng-Chul;Choi, Kyu-Jeong;Park, Chong-Man;Yoon, Soon-Gil
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.219-223
    • /
    • 2000
  • The ferroelectric SBT films were deposited on Pt/Ti/SiO$_2$/Si substrates by liquid injection metalorganic chemical vapor deposition (MOCVD) with single-mixture solution of Sr[Ta(OEt)$_5$(dmae)]$_2$and Bi(C$_6$ 6/H$_5$)$_3$. The Sr/Ta and Bi/Ta ratio in SBT films depended on deposition temperature and mol ratio of precursor in the single-mixture solution. At the substrate temperature of 40$0^{\circ}C$, Sr/Ta and Bi/Ta ratio were close to 0.4 and 1 at precursor mol ratio of 0.5~1.0, respectively. As-deposited film was amorphous. However, after annealing at 75$0^{\circ}C$ for 30 min in oxygen atmosphere, the diffraction patterns indicated polycrystalline SBT phase. The remanent polarization (Pr) and coercive field (Ec) of SBT film annealed at 75$0^{\circ}C$ were 4.7$\mu$C/$\textrm{cm}^2$ and 115.7kV/cm at an applied voltage of 5V, respectively. The SBT films annealed at 75$0^{\circ}C$ showed practically no polarization fatigue up to 10$^10$ switching cycles.

  • PDF

A scientific analysis of pigments for the Ilweoloakdo (일원오악도 안료에 대한 과학적 분석)

  • Han, Min-Su;Hong, Jong-Ouk
    • 보존과학연구
    • /
    • s.26
    • /
    • pp.165-188
    • /
    • 2005
  • From the ancient to these days, there have been used many kinds of pigment which have two types that are inorganic pigment and organic pigment. At the ancient times, natural pigment had been used but the artificially mixed pigment has been used in modern times. By the way, searching for studies has been studied recently, it would be said the ancient pigments such as Danchung, Wall painting and Mural painting are the mainthema. However, studies about the pigments used in modern pictured relics have rarely can be found. Therefore, this analysis of Ilweolokdo would be important at the point of the pigments used in pictures of royal family in modern times and the results can be briefly summarized as below; Firstly, the results of qualitative analysis of the pigments that base or all pigments of picture was detected components of Ca, Fe and As, this results meaning that picture was used filler and basic paint. Secondly, a result of the analysis on the composition elements of the pigments shows that the main components in their composition are ;White - Lead Cyanamide($2PbCO_3$.$Pb(OH)_2$) or Titanium Oxide($TiO_2$)Blue - Ultramarine($2(Na_2O$.$Al_2O_3$ .$2Si_O2$).$Na_2S_2$)Green - Emerald green($C_2H_3A_s3Cu_2O_8$)Gold - Gold(Au), Red-Red Lead($Pb_3O_4$) or Cinnabar(HgS)Black - Carbon(C)Thirdly, X-ray diffraction analysis of crystalline structure for the blue and green pigment peeling off in picture shows that the components of blue pigment is Ultramarine($2(Na_2O$.$Al_2O_3$ .$2Si_O2$).$Na_2S_2$) and green pigment is Emerald green($C_2H_3A_s3Cu_2O_8$). Especially, microcrystalline structure of the green pigment was the shape like a cross section of wood. Consequently, we knew through the analysis of qualitative and microcrystallinestructures seen on the cross section of analyzed pigments layer that the all pigments used in the Ilweoloakdo is possible to use synthetic pigments in modern.

  • PDF

The Magnetic Properties of Fe-Hf-C Soft Magnetic Thin Films (Fe-Hf-C계 연자성 박막합금의 자기적 성질)

  • 최정옥;이정중;한석희;김희중;강일구
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1993
  • Thin films of soft magnetic Fe-Hf-C alloys with nanoscale crystallites were investigated in this study. The films were fabricated by an RF diode magnetron sputtering apparatus and subsequently annealed in vacuum. The soft magnetic properties of the films were observed to differ depending on the different substrates such as Corning 7059, $CaTiO_3$ and $Al_2O_3-TiC$ with various underlayer(Cr, $SiO_2$) thickness. This results may be due to the interdiffusion between the substrate and the magnetic layer and/or between the underlayer and the magnetic layer, rather than the microstructural change such as grain size. The Fe-Hf-C films with high permeability up to 4000(at 1 MHz) and saturation magnetization up to 16 kG were obtained in the vicinity of phase boundary between the crystalline and amorphous state when the size of ${\alpha}-Fe$ grains is about 5 nm. And also the films were found to have thermal stability up to $600^{\circ}C$.

  • PDF