• 제목/요약/키워드: Ti-nitride steel

검색결과 47건 처리시간 0.02초

Ti산화물강의 HAZ인성 및 미세조직에 미치는 용접열 cycle의 영향 (Effect of weld thermal cycle on the HAZ toughness and microstructure of a Ti-oxide bearing steel)

  • 정홍철;한재광;방국수
    • Journal of Welding and Joining
    • /
    • 제14권2호
    • /
    • pp.46-56
    • /
    • 1996
  • HAZ impact toughness of Ti-oxide steel was investigated and compared to that of a conventional Ti-nitride steel. Toughness variations of each steel with weld peak temperatures and cooling rates were interpreted with microstructural transformation characteristics. In contrast to Ti-nitride steel showing continuous decrease in HAZ toughness with peak temperature, Ti-oxide steel showed increase in HAZ toughness above $1400^{\circ}C$ peak temperature. The HAZ microstructure of the Ti-oxide steel is characterized by the formation of intragranular ferrite plate, which was found to start from Ti-oxide particles dispersed in the matrix of the steel. Large austenite grain size above $1400^{\circ}C$ promoted intragranular ferrite plate formation in Ti-oxide steel while little intragranular ferrite plate was formed in Ti-nitride steel because of dissolution of Ti-nitrides. Ti-oxides in the Ti-oxide steel usually contain MnS and have crystal structures of TiO and/or $Ti_2O_3$.

  • PDF

스테인레스강중의 Ti첨가에 따른 질소용해도 측정 (Measurement of Nitrogen Solubility with Ti addition in Stainless Steel)

  • 이영욱
    • 한국산학기술학회논문지
    • /
    • 제10권11호
    • /
    • pp.3043-3047
    • /
    • 2009
  • 액상의 304스테인레스강중의 질소용해도와 질화물 형성관계를 시료채취법을 이용하여 측정하였으며, 이를 열역학적 함수로 규명하였다. 용융 304스테인레스강의 온도가 높을수록 질소용해도는 증가하였으며, 스테인레스강은 1기압의 질소 분위기하에서 0.3wt.% 이상의 Ti 첨가시 Ti계 질화물이 형성되었다. 또한 스테인레스강중에 Ti 첨가로 형성된 질화물은 TiN으로 판명되었다.

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성 (Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC)

  • 한춘수;채길병;이창래;최대규;심중표
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.118-127
    • /
    • 2012
  • 고분자전해질 연료전지용 분리판 소재로 스텐레스 강의 내식성과 전기전도성을 향상시키기 위해 표면을 TiN(titanium nitride) 또는 Ti/TiN(titanium/titanium nitride)으로 코팅하여 연료전지 운전환경에서 표면 코팅층의 물성 변화를 조사하였다. 200시간의 연료전지 운전에서 표면 코팅층의 부식, 균열(crack), 박리, 표면 화학조성 변화 등을 분석하여 코팅된 TiN 또는 Ti/TiN 박막의 역할을 규명하고자 하였다. 스텐레스 강 분리판의 전기전도도와 부식저항성은 소재 표면에 질화층 박막을 코팅함으로써 증가하였으나 연료전지 환경하에서 운전시 코팅된 박막의 부식과 박리현상이 SUS316L-Ti/TiN을 제외하고 현저히 발생하였다. TiN 코팅층과 하부 기재 사이에 Ti 중간층을 도입함으로써 TiN 박막의 밀착성이 향상되고 또한 코팅층의 두께 증가로 부식 위험성이 감소하는 것을 관찰하였다.

Duplex coating에서 계면구조에 미치는 Ti 이온충격의 효과에 대한 연구 (A Study on the Effect of Ti Ion Bombardment on the Interface in a Duplex Coating)

  • 백운승;권식철;이재영;나종주;이상로;이구현;이건환
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.219-227
    • /
    • 1998
  • In order to investigate the interfacial structure between TiN and iron nitride, an AISI 4140 steel was nitrided to form a layer of thickness 15$\mum$ by DC ion nitriding, then the surface was bombarded with Ti ions and subsequently coated a TiN film of 5$\mum$ by arc ion plating method. The interfacial microstructure between TiN and iron nitride was characterized by optical microscope, SEM and XRD. So called black layer was observed in the duplex treatment. It was resulted from the decomposition of iron nitride during the bombardment. Its thickness was increased with increasing bombardment time at high bias voltage. But the thickness was greatly decreased when the iron nitride was bombarded with a nitrogen gas or at a reduced bias voltage. The adhesion strength of the top TiN coating was decreased with increasing thickness of the black layer. Furthermore, the reduced adhesion strength in this system was discussed in view of the interfacial structural relationship between TiN and iron nitride.

  • PDF

이온 질화층이 TiN 박막의 밀착성에 미치는 영향 (The Adhesion of TiN Coatings on Plasma-nitrided Steel)

  • 고광만;김홍우;김문일
    • 열처리공학회지
    • /
    • 제4권4호
    • /
    • pp.1-14
    • /
    • 1991
  • In PECVD(Plasma-Enhanced Chemical Vapor Deposition) process, titanium nitride is thin and its adhesion is poor for the protective coatings. Therefore it has been studied that intermediate layer forms between substrate and TiN thin film. Using R.F. plasma nitriding, nitride layer was first formed, then TiN thin film coated by PECVD. The chemical composition of the coatings has been characterized using AES, EDS and their crystallographic structure by means of XRD. Mechanical properties such as microhardness and film adhesion have also been determined by vickers hardness test, scratch test and indentation test. As a result, there was no difference in chemical composition and structure between the TiN deposition only and the composite of TiN deposition on nitrided steel. It was found that nitrided substrate increased the hardness of TiN coatings and was beneficial in preventing the plastic deformation in the substrate. Therefore the effective load bearing capacity of the TiN coatings on nitrided steel was increased and their adhesion was improved as well. According to the results of this study, the processes that lead to the formation of composite layers characterized by good working properties, i.e., high microhardness, adhesion and resistance to deformation.

  • PDF

Si가 Ti-Si-N 코팅막의 기계적 성밀 및 내산화특성에 미치는 영향 (Effect of Si on Mechanical and Anti-oxidation Properties of Ti-Si-N Coating)

  • 박범희;김정애;이종영;김광호
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.96-101
    • /
    • 2000
  • Comparative studies on microstructure, and mechanical and anti-oxidation properties between TiN and Ti-Si-N films were performed. The Ti-Si-N films were deposited on high-speed steel and silicon wafer substrates by plasma-assisted chemcial vapor deposition(PACVD) technique. The Si addition to TiN film caused to change the microstructure such as grain size refinement, randomly multi-oriented microstructure, and nano-sized codeposition of silicon nitride in the TiN matrix. The Ti-Si-N film, contains Si content of ∼7 at.%, showed the micro-hardness value of ∼3400 HK, which was higher than the pure TiN film whose hardness was ∼1500HK. The Ti-Si(7 at.%)-N film also showed much improved anti-oxidation properties compared with those of the pure TiN film. These properties were also related to the microstructure of Ti-Si(7 at.%)-N film was formed and retarded further oxidation of the nitridelayer. These properties were also related to the microstructure of Ti-Si(7 at.%)-N film which was characterized by nano-sized precipitates of silicon nitride phase in the TiN matrix and randomly oriented grains.

  • PDF

Experimental and numerical research on ballistic performance of carbon steels and cold worked tool steels with and without Titanium Nitride (TiN) coating

  • Ergul, Erdi;Doruk, Emre;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.153-160
    • /
    • 2017
  • It is extremely important to be aware of the ballistic performances of engineering materials in order to be able to choose the lightest armor providing full ballistic protection in civil and military applications. Therefore, ballistic tests are an important part of armor design process. In this study, ballistic performance of plates made of carbon steel and cold worked tool steel against 7.62 mm AP (armor-piercing) bullets was examined experimentally and numerically in accordance with NIJ standards. Samples in different sizes were prepared to demonstrate the effect of target thickness on ballistic performance. Some of these samples were coated with titanium nitride using physical vapor deposition (PVD) method. After examining all successful and unsuccessful samples at macro and micro levels, factors affecting ballistic performance were determined. Explicit non-linear analyses were made using Ls-Dyna software in order to confirm physical ballistic test results. It was observed that the ballistic features of steel plates used in simulations comply with actual physical test results.

AISI 420 stainless steel 기판위에 D.C magnetron sputtering 법으로 제조한 TiN 박막의 특성 평가 (Processing and Characterization of RF Magnetron Sputtered TiN Films on AISI 420 Stainless Steel)

  • 송승우;최한철;김영만
    • 한국표면공학회지
    • /
    • 제39권5호
    • /
    • pp.199-205
    • /
    • 2006
  • Titanium nitride (TiN) coatings were produced on AISI 420 stainless steel by DC magnetron sputtering of a Ti target changing the processing variables, such as the flow rate of $N_2/Ar$, substrate temperature and the existence of Ti interlayer between TiN coatings and substrates. The hardness and residual stress in the films were investigated using nanoindentation and a laser scanning device, respectively. The stoichiometry and surface morphology were investigated using X-Ray Diffraction and SEM. The corrosion property of the films was also studied using a polarization method in NaCl (0.9%) solution. Mechanical properties including hardness and residual stress were related to the ratio of $N_2/Ar$ flow rate. The corrosion resistance also was related to the processing variables.

NEW PROGRESS IN TiN-BASED PROTECTIVE COATINGS DEPOSITED BY ARC ION PLATING

  • Huang, R.F.;Wen, L.S.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.265-275
    • /
    • 1999
  • Titanium nitride and related overlayers produced by arc ion plating (AIP) are applied as commercial coatings in world-wide scale since the middle of 80s. Due to the achievements of low temperature deposition (LTD), they begin now to be used as wear and corrosion-resistant coatings for machine parts, besides applications on cemented carbide and high speed steel cutting tools. On the other side, TiN can be now applied successfully to brass, Al-alloy, ZnAl alloy articles as decorative coating through LTD. Various nitrides, carbonitrides, borides and other refractory compounds, such as (Ti, Al)N, TiCN, CrN, are used as the coatings for special heavy-duty working conditions instead of TiN since 90s. More and more multilayer coatings are applied now substituting single layer ones. Duplex processes are under development.

  • PDF