• Title/Summary/Keyword: Ti-alloys

Search Result 751, Processing Time 0.024 seconds

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Effect of Mo and Nb on High Temperature Oxidation of TiAl Alloys (Mo, Nb첨가가 TiAl합금의 산화에 미치는 영향)

  • Kim Jae-Woon;Lee Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.614-618
    • /
    • 2004
  • Alloys of $Ti46\%Al-2\%Mo-2\%Nb$ were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The alloys displayed good oxidation resistance due mainly to the beneficial effects of Mo and Nb. The oxide scales formed consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_{2}O_3-rich$ layer, and an inner mixed layer of ($TiO_{2}+Al_{2}O_3$). Molybdenum and niobium dissolved in the scale effectively improved oxidation resistance. They were mainly distributed in the inner mixed layer of ($TiO_{2}+Al_{2}O_3$).

A Study on the Tool Wear and Cutting Characteristics in the Machining of Ti-6Al-4V Using Tungsten Carbide Tool (초경공구를 사용한 Ti-6A1-4V 타이타늄 합금이 절삭가공시 공구마멸과 절삭특성에 관한 연구)

  • 김남용;고준빈;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.9-16
    • /
    • 2002
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior in machining of Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials in present and future aerospace or medical applications. Recently, their usage has already been broaden to everybody's commercial applications such as golf heads, finger rings and many decorative items. To anticipate the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are necessary. This study is concentrated to the machining parameters of the Ti-6A1-4V alloy due to their dominant position in the production of titanium alloys.

Effect of Third Elements on the Microstructures and Mechanical Properties of Ti-Al Intermetallic Compounds (Ti-Al 금속간화합물의 미세조직 및 기계적 성질에 미치는 제3원소의 영향)

  • Choi, Chang-Woo;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.2
    • /
    • pp.139-148
    • /
    • 1992
  • The mechanical properties of Ti-Al intermetallic compounds which contain Mn, Zr, or Cr as the third element have been evaluated by means of hardness and compression tests. Microstructures have also been examined using an optical microscope. The cast structures of Ti-Al alloys are coarsened and the lamellar volume fraction is increased by the additions of Mn or V, but the cast structures are refined by the addition of Zr. Hardness tests of room temperature and compression tests at $600^{\circ}C$ showed that the mechanical properties of Ti-Al alloys were mainly dependent on the volume fraction of the ${\alpha}_2$ phase, grain size and solid solution hardening. However according to the compression test at $1000^{\circ}C$, the yield strength of Ti-Al alloys decreased with an increase in Mn or Cr content, but increased with an increase in the Zr content.

  • PDF

A Study on the Machining Characteristics of Ti-6Al-4V Alloy (Ti-6Al-4V 타이타늄 합금의 절삭특성에 관한 연구)

  • 김남용;고준빈;이동주
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.20-28
    • /
    • 2003
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior in machining of Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials in present and future aerospace or medical applications. Recently, their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items. To anticipate the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of titanium alloys.

A Study on the Tool Wear and Cutting Characteristics in the Machining of Ti-6Al-4V using Tungsten Carbide Tool (초경공구를 사용한 Ti-6Al-4V 타이타늄 합금의 절삭가공시 공구마멸과 절삭특성에 관한 연구)

  • 김남용;홍우표;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.361-366
    • /
    • 2000
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior when machining Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. this material is one of the strong candidate materials present and future aerospace or medical applications. Nowadays their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items. Anticipating the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are deemed necessary. this study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of titanium alloys.

  • PDF

Blended Elemental P/M Synthesis of Titanium Alloys and Titanium Alloy-based Particulate Composites

  • Hagiwara, Masuo;Emura, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1030-1031
    • /
    • 2006
  • Titanium alloys and Titanium alloy-based particulate composites were synthesized using the blended elemental P/M route. First, processing conditions such as the fabrication of master alloy powder were investigated. Ti-6Al-4V, Ti-5Al-2.5Fe, Ti-6Al-2Sn-4Zr-2Mo, IMI685, IMI829, Timetal 1100 and Timetal 62S, and Ti-6Al-2Sn-4Zr-2Mo/ 10%TiB and Timetal 62S/10%TiB were then synthesized using the optimal processing conditions obtained. The microstructures and mechanical properties such as tensile strength and high cycle fatigue strength were evaluated.

  • PDF

Influence of Compositions of Sintered Ti-Ni Alloys on their Thermo-mechanical Properties

  • Kyogoku, Hideki;Ikeda, Tetsuya;Komatsu, Shinichiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.81-82
    • /
    • 2006
  • This paper presents the influence of the compositions of sintered Ti-Ni alloys on their thermo-mechanical properties. The Ti-Ni alloys having various compositions from 50at%Ni to 51at%Ni were sintered using elemental Ti and Ni powders by a pulse-current pressure sintering equipment. The deformation resistance in stress-strain curves increased with an increase in Ni content. In the case of Ti-50at%Ni, tensile strength and elongation were more than 500 MPa and 7%, respectively. The increase in Ni content also makes the transformation temperatures lower. The deformation resistance at a test temperature change from 293K and 353K in isothermal tensile test increased with elevating test temperature.

  • PDF

High Temperature Oxidation of Ti-15Mo-5Zr-3Al Alloy (Ti-15Mo-5Zr-3Al 합금의 고온산화)

  • 우지호;김종성;백종현;이동복
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.278-285
    • /
    • 1998
  • Alloys of Ti-15Mo-5Zr-3Al(wt%) were oxidized in air between 700 and $900^{\circ}C$. It was found that the oxidation resistance is much better than that of either commercially available pure Ti-6Al-4V(wt%) alloys. The oxide scales were primarily composed of thick Ti-ox-ides which were formed by the inward diffusion of oxygen from the atmosphere. At higher temperatures a thin $\alpha$-$Al_2O_3$ layer was formed on Ti-oxides owing to the outward diffusion of Al from the base alloys. Molybdenum, the noblest metal among the alloy components, was predominantly present behind the oxide-substrate interface. Zirconium, an oxygen active metal, was present at both the oxide layer and the substrate.

  • PDF

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.