• Title/Summary/Keyword: Ti-alloys

Search Result 738, Processing Time 0.024 seconds

Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys (Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향)

  • Yoon, Jang-Won;Hyun, Yong-Taek;Kim, Jeoung-Han;Yeom, Jong-Taek;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.

Evaluation of Hydrogenation Properties on Ti-Nb-Cr Alloys by Single-Roll Melt Spinning (단롤주조법에 의한 Ti-Nb-Cr 합금의 제조와 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.433-439
    • /
    • 2009
  • Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. In order to solve the problem, the activation of a wide range of hysteresis of hydriding/dehydriding and without degradation of hydrogen capacity due to the hydriding/dehydriding cycle have to be improved in order to be aplied. Ti-Cr alloys have a high capacity about 0.8 wt.% in an ambient atmosphere. When the Ti-Cr alloys are added to Nb and Ta elements, they formed a laves phase in the alloy system. The Nb element was expected to make easy diffuse hydrogen in the Ti-Cr storage alloy, which was a catalytic element. In this study, the Ti-Nb-Cr ternary alloy was prepared by melt spinning. As-received specimens were characterized using XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy) with EDX (Energy Dispersive X-ray) and TG/DSC (Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI (Pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423 K.

Effect of Alloy Addition (Ta, Nb) on Oxidation Behavior of cp-Ti for Biomaterials (생체용 Ti합금의 산화거동에 미치는 Ta 및 Nb 첨가의 영향)

  • Lee Doh-Jae;Oh Tae-Wook;Park Bum-Su;Kim Soo-Hak;Jun Choong-Geug;Yoon Kye-Lim
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • The oxidation behaviors of Ti-10Ta-10Nb alloy and Ti-6Al-4V alloy were studied in dry air atmosphere. Specimens were melted in consumable vacuum arc furnace and homogenized at $1050^{\circ}C$ for 24 h. Hot rolling was performed at $1000^{\circ}C$. Specimens of the alloys were oxidized as the temperature range $400~650^{\circ}C$ for 30 min. The oxidation behavior of the alloys was analysed by optical microscope, SEM/EDX, XRD, XPS and TGA. Immersion test was performed in 1% Lactic acid. In the microscope observation, oxide layer of Ti-10Ta-10Nb alloy was denser and thinner than Ti-6Al-4V's. The weight gains during the oxidation rapidly increased at the temperature above $600^{\circ}C$ in Ti-6Al-4V's alloy and$ 700^{\circ}C$ in Ti-10Ta-10Nb alloy. According to XRD results, oxide layers were composed of mostly $TiO_2$(rutile) phase. It was analysed that the passive film of the Ti alloys consisted of $TiO_2$ through X-ray photoelectron spectroscopy(XPS) analysis.

Effects of Heat Treatment and Ti addition on Microstructure of Invar Alloys (인바합금의 미세조직에 미치는 열처리 및 Ti 첨가 영향)

  • 허민선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.185-189
    • /
    • 1999
  • There has been a considerable attention in Invar alloys because of its low thermal expansion property. A low thermal expansion property of Invar alloys, lower than 10-6 near the room temperature, is attractive for precision machine tools. However, the expansion property of Invar alloys is limited below about 520。K, and mechanical properties are relatively low to apply to machine tools. In order to improve mechanical properties in this alloy, Ti alloy element was added to an invar alloy. Microstructure changes and optimum heat-treatment conditions according to Ti addition were discussed in the Ni38-Mo2-Crl-Fe Invar alloy.

  • PDF

Surface Characteristics of Hydroxyapatite Coated Surface on Nano/Micro Pore Structured Ti-35Ta-xNb Alloys

  • Jo, Chae-Ik;Choe, Han-Choel
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.185-185
    • /
    • 2014
  • In this study, we investigated surface characteristics of hydroxyapatite coated surface on nano/micro pore structured Ti-35Ta-xNb alloys. This paper was focus on morphology and corrosion resistance of Anodic oxidation. To prepare the samples, Ti-35Ta-xNb (x= 0, 10 wt. %) alloys were manufactured by arc melting and heat-treated for 12 h at $1050^{\circ}C$ in Ar atmosphere at $0^{\circ}C$ water quenching. Micro-pore structured surface was performed using anodization with a DC power supply at 280 V for 3 min, nanotube formed on Ti-35Ta-xNb alloys was performed using DC power supply at 30 V in 60 min at room temperature. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction.

  • PDF

Mechanical Properties and Surface Characteristics of Ti-25Ta-xHf Alloys

  • Park, Seon-Yeong;Kim, Jeong-Jae;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.187-187
    • /
    • 2014
  • In this study, we investigated mechanical properties and surface characteristics of Ti-25Ta-xHf alloys. The samples were manufactured for composition of Ti-25Ta-xHf(x=0 to 15 wt. %) alloys. Each alloy was melted twenty times in an arc-melting vacuum furnace. The microstructural phases and phase transformation of Ti-25Ta-xHf alloys were identified with the aid of an XRF, XRD and DSC. And mechanical properties were investigated using Vickers hardness, nanoindentation, and tensile test.

  • PDF

Hydroxyapatite Precipitation Phenomena on Nanotubular Ti-29Nb-xHf Ternary Alloys

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.108-108
    • /
    • 2015
  • In order to investigate on hydroxyapatite precipitation phenomena on nanotubular Ti-29Nb-xHf ternary alloys, Ti-29Nb-xHf alloys contained (0% to 15%) Hf were manufactured using arc melting furnace. Formation of nanotubular structure was achieved by an electrochemical method in 1M $H_3PO_4$ electrolytes containing 0.8%wt. % NaF. Electrochemical deposition was carried out using cyclic and voltammetry(CV) method at $85^{\circ}C$ in $5mM\;Ca(NO_3)_2+3mM\;NH_4H_2PO_4$. HA coating on nanotube formed Ti-29Nb-xHf ternary alloys showed a good wettability.

  • PDF

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Effect of Mo and Nb on High Temperature Oxidation of TiAl Alloys (Mo, Nb첨가가 TiAl합금의 산화에 미치는 영향)

  • Kim Jae-Woon;Lee Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.614-618
    • /
    • 2004
  • Alloys of $Ti46\%Al-2\%Mo-2\%Nb$ were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The alloys displayed good oxidation resistance due mainly to the beneficial effects of Mo and Nb. The oxide scales formed consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_{2}O_3-rich$ layer, and an inner mixed layer of ($TiO_{2}+Al_{2}O_3$). Molybdenum and niobium dissolved in the scale effectively improved oxidation resistance. They were mainly distributed in the inner mixed layer of ($TiO_{2}+Al_{2}O_3$).

A Study on the Tool Wear and Cutting Characteristics in the Machining of Ti-6Al-4V Using Tungsten Carbide Tool (초경공구를 사용한 Ti-6A1-4V 타이타늄 합금이 절삭가공시 공구마멸과 절삭특성에 관한 연구)

  • 김남용;고준빈;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.9-16
    • /
    • 2002
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior in machining of Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials in present and future aerospace or medical applications. Recently, their usage has already been broaden to everybody's commercial applications such as golf heads, finger rings and many decorative items. To anticipate the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are necessary. This study is concentrated to the machining parameters of the Ti-6A1-4V alloy due to their dominant position in the production of titanium alloys.