• Title/Summary/Keyword: Ti-TiC

Search Result 5,416, Processing Time 0.029 seconds

Effect of C/Ti Atom Ratio on the Deformation Behavior of TiCχ Grown by FZ Method at High Temperature

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.373-378
    • /
    • 2013
  • In order to clarify the effect of C/Ti atom ratios(${\chi}$) on the deformation behavior of $TiC_{\chi}$ at high temperature, single crystals having a wide range of ${\chi}$, from 0.56 to 0.96, were deformed by compression test in a temperature range of 1183~2273 K and in a strain rate range of $1.9{\times}10^{-4}{\sim}5.9{\times}10^{-3}s^{-1}$. Before testing, $TiC_{\chi}$ single crystals were grown by the FZ method in a He atmosphere of 0.3MPa. The concentrations of combined carbon were determined by chemical analysis and the lattice parameters by the X-ray powder diffraction technique. It was found that the high temperature deformation behavior observed is the ${\chi}$-less dependent type, including the work softening phenomenon, the critical resolved shear stress, the transition temperature where the deformation mechanism changes, the stress exponent of strain rate and activation energy for deformation. The shape of stress-strain curves of $TiC_{0.96}$, $TiC_{0.85}$ and $TiC_{0.56}$ is seen to be less dependent on ${\chi}$, the work hardening rate after the softening is slightly higher in $TiC_{0.96}$ than in $TiC_{0.85}$ and $TiC_{0.56}$. As ${\chi}$ decreases the work softening becomes less evident and the transition temperature where the work softening disappears, shifts to a lower temperature. The ${\tau}_c$ decreases monotonously with decreasing ${\chi}$ in a range of ${\chi}$ from 0.86 to 0.96. The transition temperature where the deformation mechanism changes shifts to a lower temperature as ${\chi}$ decreases. The activation energy for deformation in the low temperature region also decreased monotonously as ${\chi}$ decreased. The deformation in this temperature region is thought to be governed by the Peierls mechanism.

Effect of TiB$_2$on Properties of SiC Electroconductive Ceramic Composites (SiC 전도성 세라믹 복합체의 특성에 미치는 TiB$_2$의 영향)

  • Sin, Yong-Deok;Park, Mi-Rim;So, Byeong-Mun;Lee, Dong-Mun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.141-146
    • /
    • 2002
  • The mechanical and electrical properties of the pressureless sintered SiC-TiB$_2$electroconductive ceramic composites were investigated as functions of the transition metal of TiB$_2$. The result of phase analysis for the SiC-TiB$_2$ composites by XRD revealed $\alpha$-SiC(6H), TiB$_2$, and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phases. The relative density showed the lowest 84.8% for the SiC-TiB$_2$composites added with 39vol.%TiB$_2$. Owing to crack deflection, crack bridging and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 7.8 MPa.m$^{1}$2/ for composites added with 39vol.%TiB$_2$under a pressureless annealing at room temperature. The electrical resistivity of the SiC-27vol.%TiB$_2$ composites was negative temperature coefficient resistance(NTCR), and the electrical resistivity of the besides SiC-27vol.%TiB$_2$composites was all positive temperature coefficient resistance(PCTR) in the temperature range of $25^{\circ}C$ to $700^{\circ}C$.EX>.

Liquid Phase Sintered SiC-30 wt% TiC Composites by Spark Plasma Sintering (스파크 플라즈마 소결에 의한 액상소결 SiC-30 wt% TiC 복합체)

  • 조경식;이광순;송진호;김진영;송규호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2003
  • Rapid densification of a SiC-30 wt% TiC powder with additive 10 wt% A1$_2$O$_3$-Y$_2$O$_3$-CaO was conducted by Spark Plasma Sintering(SPS). The fully-densified materials can be obtain through the SPS process with very fast heating rate and short holding time. In the present work, the heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature varied from $1600^{\circ}C$ to $1800^{\circ}C$ for 10 min. The full densification of SiC-30 wt% TiC composites with the addition of $Al_2$O$_3$, $Y_2$O$_3$ and CaO was achieved at the temperature above $1700^{\circ}C$ by spark plasma sintering. The XRD found that 3C-SiC and TiC were maintained the entire SPS process temperature, without phase transformation of SiC and formation of YAG phase to $1800^{\circ}C$. The microstructures of the rapidly densified SiC-30 wt% TiC composites consisted of smaller equiaxed SiC grains and larger TiC grains. The biaxial strength of 635.2 MPa and fracture toughness of 6.12 MPaㆍ$m^{1/2}$ were found for the specimen prepared at $1750^{\circ}C$.

Oxidation Resistance and Electrical Conductivity of $Ti_3SiC_2$ with Thin Oxide Layer

  • Hwang, Sung-Ik;Han, Kyoung-Ran;Kim, Chang-Sam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1110-1111
    • /
    • 2006
  • [ $Ti_3SiC_2$ ] was coated with $Al_2O_3$, MgO and $SiO_2$ respectively by sol-gel method and cured at 900 and $1200^{\circ}C$. The coated oxides did not react with $Ti_3SiC_2$ at $900^{\circ}C$ but reacted with it to form $TiC_x$ at $1200^{\circ}C$. The specimen coated with $SiO_2$ at $900^{\circ}C$ formed a dense protecting layer and showed the best oxidation resistance at $800^{\circ}C$ in air. However, the dense protecting layers did not form in $Al_2O_3$ and MgO coated specimens cured even at $900^{\circ}C$. MgO coated specimen showed the worst improvement in the oxidation resistance because the reactivity of MgO with $Ti_3SiC_2$ was highest. On the other hand, the electrical conductivities were measured in MgO and $Al_2O_3$ coated specimens to have TiCx but could not be measured in the $SiO_2$ coated ones because of the nonconductive dense protected layers.

  • PDF

Formation of Ti3SiC2 Interphase of SiC Fiber by Electrophoretic Deposition Method

  • Lee, Hyeon-Geun;Kim, Daejong;Jeong, Yeon Su;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • Due to its stability at high temperature and its layered structure, $Ti_3SiC_2$ MAX phase was considered to the interphase of $SiC_f/SiC$ composite. In this study, $Ti_3SiC_2$ MAX phase powder was deposited on SiC fiber via the electrophoretic deposition (EPD) method. The Zeta potential of the $Ti_3SiC_2$ suspension with and without polyethyleneimine as a dispersant was measured to determine the conditions of the EPD experiments. Using a suspension with 0.03 wt.% ball milled $Ti_3SiC_2$ powder and 0.3 wt.% PEI, $Ti_3SiC_2$ MAX phase was successfully coated on SiC fiber with an EPD voltage of 10 V for 2 h. Most of the coated $Ti_3SiC_2$ powders are composed of spherical particles. Part of the $Ti_3SiC_2$ powders that are platelet shaped are oriented parallel to the SiC fiber surface. From these results we expect that $Ti_3SiC_2$ can be applied to the interphase of $SiC_f/SiC$ composites.

Room-temperature tensile strength and thermal shock behavior of spark plasma sintered W-K-TiC alloys

  • Shi, Ke;Huang, Bo;He, Bo;Xiao, Ye;Yang, Xiaoliang;Lian, Youyun;Liu, Xiang;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.190-197
    • /
    • 2019
  • W-K-TiC alloys with different titanium carbide concentrations (0.05, 0.1, 0.25, 0.5, 1, 2) wt.% were fabricated through Mechanical Alloying and Spark Plasma Sintering. The effects of the addition of nano-scaled TiC particles on the relative density, Vickers micro-hardness, microstructure, crystal information, thermal shock resistance, and tensile strength were investigated. It is revealed that the doped TiC nano-particles located at the grain boundaries. The relative density and Vickers micro-hardness of W-K-TiC alloys was enhanced with TiC addition and the highest Vickers micro-hardness is 731.55. As the TiC addition increased from 0.05 to 2 wt%, the room-temperature tensile strength raised from 141 to 353 MPa. The grain size of the W-K-TiC alloys decreased sharply from $2.56{\mu}m$ to 330 nm with the enhanced TiC doping. The resistance to thermal shock damage of W-K-TiC alloys was improved slightly with the increased TiC addition.

Effect of Annealing on c-axis Orientation of $PbTiO_3$ Thin Films by D.C magnetron Reactive Sputtering (D.C Magnetron Reactive Sputtering 법으로 증착한 $PbTiO_3$ 박막의 열처리에 따른 c-축 배향성의 변화)

  • 이승현;권순용;최한메;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.802-808
    • /
    • 1996
  • PbTiO3 thin films were fabricated onto MgO(100) single crystal substrate by reactive D. C magnetron sput-tering of Pb and Ti metal in an oxygen and argon gas mixture. The annealing of the thin films resulted in the decrease of both the c-axis orientation ratio and the lattice parameter. It is well known that the c-axis lattice parameter of thin film is dependent on the Pb/(Pb+Ti)ratio and the residual stress in the film The PbTiO3 thin films with a Pb/(Pb+T) ratio ranging from 0.45 to 0.57 were fabricated and annealed. The structure of the film the c-axis orientation ratio and the lattice parameter were not dependent on the Pb/(Pb+Ti) ratio before and after annealing. These experimental results proved that the decrease of the c-axis lattice parameter under the annealing conditions was due to the relaxation of the intrinsic stress in the film. This relaxation of the intrinsic stress caused the decrease of the c-axis orientation ratio and this phenomenon can be explained by c-axis growth lattice model.

  • PDF

Photoelectrical Conductivity and Photodegradation Properties of $TiO_2$ and Ag Sputtered $TiO_2$ Plasma Spraying Coatings ($TiO_2$ 및 Ag 스퍼터링-$TiO_2$ 플라즈마 용사피막의 광전류 및 광분해 특성)

  • Kang, Tae-Gu;Jang, Yong-Ho;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.38-43
    • /
    • 2009
  • In this study, we investigated photocatalytic ability of plasma sprayed $TiO_2$ and Ag sputtering $TiO_2$(Ag-$TiO_2$) coatings. A sputtering processes were adopted to coat the surface of $TiO_2$ with Ag(99.99%). Ag was sputtered at 10mA, 450V for $1{\sim}11$ seconds. $TiO_2$ and Ag-$TiO_2$ coatings were heat-treated at 250, 300, 350, $400^{\circ}C$ for $0{\sim}240$seconds. Photoelectrical conductivity was measured by four-point probe, and photodegradation was calculated by UV-V is spectrometer. Microstructure observation of $TiO_2$ and Ag-$TiO_2$ coatings were investigated by SEM. Crystal structure of $TiO_2$ and Ag-$TiO_2$ coatings were investigated by XRD. Qualitative analyses of $TiO_2$ and Ag-$TiO_2$ coatings were conducted by EDX. When $TiO_2$ coatings were heat-treated at $350^{\circ}C$ for 30 sec, photoelectrical conductivity and photodegradation were best. And in XRD analysis result, (101)/(110) relative intensity ratio of $TiO_2$(rutile) was comparably changed with photoelectrical conductivity. When Ag-$TiO_2$ coatings were heat-treated at $350^{\circ}C$ for 30 [sec] after sputtering Ag for 7 sec, Photoelectrical conductivity and photodegradation are best. Surface of coatings in such condition has very small and uniform Ag particles.

Ferroelectric Properties of Bi4Ti3O12 Thin Films Deposited on Si and SrTiO3 Substrates According to Crystal Structure and Orientation (Si 및 SrTiO3 기판 위에 증착된 Bi4Ti3O12 박막의 결정구조 및 배향에 따른 강유전 특성)

  • Lee, Myung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.543-548
    • /
    • 2018
  • Ferroelectric $Bi_4Ti_3O_{12}$ films were deposited on $SrTiO_3(100)$ and Si(100) substrate by using conductive $SrRuO_3$ films as underlayer, and their ferroelectric and electrical properties were investigated depending on crystal structure and orientation. C-axis oriented $Bi_4Ti_3O_{12}$ films were grown on well lattice-matched pseudo-cubic $SrRuO_3$ films deposited on $SrTiO_3(100)$ substrate, while random-oriented polycrystalline $Bi_4Ti_3O_{12}$ films were grown on $SrRuO_3$ films deposited on Si(100) substrate. The random-oriented polycrystalline film showed a good ferroelectric hysteresis property with remanent polarization ($P_r$) of $9.4{\mu}C/cm^2$ and coercive field ($E_c$) of 84.9 kV/cm, while the c-axis oriented film showed $P_r=0.64{\mu}C/cm^2$ and $E_c=47kV/cm$ in polarizaion vs electric field curve. The c-axis oriented $Bi_4Ti_3O_{12}$ film showed a dielectric constant of about 150 and lower thickness dependence in dielectric constant compared to the random-oriented film. Furthermore, the c-axis oriented $Bi_4Ti_3O_{12}$ film showed leakage current lower than that of the polycrystalline film. The difference of ferroelectric properties in two films was explained from the viewpoint of depolarization effect due to orientation of spontaneous polarization and layered crystal structure of bismuth-base ferroelectric oxide.

Effects of post-annealing on the characteristics of MOCVD-Cu/TiN/Si structures by the rapid thermal process (급속열처리에 의한 MOCVD-Cu/TiN/Si 구조의 후열처리 특성)

  • 김윤태;전치훈;백종태;김대룡;유형준
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.28-35
    • /
    • 1997
  • Effects of rapid thermal annealing on the characteristics of Cu films deposited from the (hfac)Cu(VTMS) precursor and on the barrier properties of TiN layers were studied. By the post-annealing, the electrical characteristics of Cu/TiN and the microstructures of Cu films were significantly changed. The properties of Cu films were more sensitive to the annealing temperature than the annealing time. Sheet resistance started to increase above $400^{\circ}C$, and the interreaction between Cu and Ti and the oxidation of Cu layer were observed above $600^{\circ}C$. The grain growth of Cu with the (111) preferred orientation was found to be most pronounced at $500^{\circ}C$. It revealed that the optimum annealing conditions for MOCVD-Cu/PVD-TiN structures to enhance the electrical characteristics without degradation of TiN barriers were in the range of $400^{\circ}C$.

  • PDF