DOI QR코드

DOI QR Code

Liquid Phase Sintered SiC-30 wt% TiC Composites by Spark Plasma Sintering

스파크 플라즈마 소결에 의한 액상소결 SiC-30 wt% TiC 복합체

  • 조경식 (금오공과대학교 재료공학전공) ;
  • 이광순 (금오공과대학교 재료공학전공) ;
  • 송진호 (금오공과대학교 재료공학전공) ;
  • 김진영 (쌍용머티리얼주식회사) ;
  • 송규호 (쌍용머티리얼주식회사)
  • Published : 2003.08.01

Abstract

Rapid densification of a SiC-30 wt% TiC powder with additive 10 wt% A1$_2$O$_3$-Y$_2$O$_3$-CaO was conducted by Spark Plasma Sintering(SPS). The fully-densified materials can be obtain through the SPS process with very fast heating rate and short holding time. In the present work, the heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature varied from $1600^{\circ}C$ to $1800^{\circ}C$ for 10 min. The full densification of SiC-30 wt% TiC composites with the addition of $Al_2$O$_3$, $Y_2$O$_3$ and CaO was achieved at the temperature above $1700^{\circ}C$ by spark plasma sintering. The XRD found that 3C-SiC and TiC were maintained the entire SPS process temperature, without phase transformation of SiC and formation of YAG phase to $1800^{\circ}C$. The microstructures of the rapidly densified SiC-30 wt% TiC composites consisted of smaller equiaxed SiC grains and larger TiC grains. The biaxial strength of 635.2 MPa and fracture toughness of 6.12 MPaㆍ$m^{1/2}$ were found for the specimen prepared at $1750^{\circ}C$.

10 wt% A1$_2$O$_3$-Y$_2$O$_3$-CaO를 첨가한 SiC-30 wt% TiC 분말을 스파크 플라즈마 소결(SPS) 방법을 사용하여 급속 치밀화 하였다. SPS 공정은 매우 빠른 승온 속도와 짧은 시간에 완전 치밀한 시편을 얻을 수 있다. 본 실험에서, 승온 속도와 압력은 $100^{\circ}C$/min과 40MPa이고, 소결 온도 범위는$1600^{\circ}C$~$1800^{\circ}C$이었으며, 10min 동한 유지하였다. $Al_2$O$_3$, $Y_2$O$_3$ 및 CaO를 첨가한 SiC-30 wt% TiC 복합체는 $1700^{\circ}C$ 이상 온도에서 스파크 플라즈마 소결 방법으로 완전 치밀화가 이루어졌다. 모든 SPS 공정 온도에서 탄화큐소으 상전이나 YAG 결정상의 형성 없이 3C-SiC와 TiC 만이 XRD에서 나타났다. 급속 소결한 SiC-30 wt% TiC 복합체의 미세구조는 비교적 작은 등축상 SiC 결정립과 비교적 큰 TiC 결정립으로 구성되었다. $1750^{\circ}C$에서 제조한 시편의 이축강도능 635.2MPa이고, 파괴인성은 6.12 MPaㆍ$m^{1/2}$이었다.

Keywords

References

  1. Am. Ceram. Soc. Bull v.65 no.2 Microstructure Development and Mechanical Properties of SiC and of SiC-TiC Composites M.A.Janney
  2. J. Mater. Sci. v.25 no.5 Hot Pressing of SiC-TiC Composites H.Endo;M.Ueki;H.Kubo https://doi.org/10.1007/BF00638050
  3. J. Ceram. Soc. Jpn. v.100 no.4 High-temperature Toughening Mechanism in SiC/TiC Composites B.W.Lin;T.Yano;T.Isheki https://doi.org/10.2109/jcersj.100.509
  4. J. Kor. Ceram. Soc. v.32 no.8 Mechanical and Electrical Properties of Hotpressed Silicon Carbide-Titanium Carbide Composites Y.K.Park
  5. J. Kor. Ceram. Soc. v.29 no.10 Gas Pressure Sintering of $SiC_{(p)}$-$TiC_{(p)}$ Composites I.S.Kim;B.S.Kim;Y.S.Jang;H.C.Park;K.D.Oh
  6. Ceramic Transactions v.99 SiC-TiC Ceramic Particulate Composites-Part Ⅰ : Gas pressure Sintering and Mechanical Properties R.W.Sche;D.Klaffke
  7. Mater. Sci. Eng. v.A 109 Studies on the Strengthening of Silicon Carbide-based Multiphase Ceramics Ⅰ : The SiC-TiC System D.J.Jiang;J.H.Wang;Y.L.Li;L.T.Ma
  8. J. Ceram. Soc. Jpn. v.98 no.10 Fabrication and Properties of TiC/SiC Whisker Composites A.Kamiya;K.Nakano;H.Okuda https://doi.org/10.2109/jcersj.98.1146
  9. J. Mater. Sci. Lett. v.14 Improvements in the Mechanical Properties of TiC by the Dispersion of Fine SiC Particles K.W.Chae;K.Niihara;D.Y.Kim https://doi.org/10.1007/BF00270718
  10. J. Am. Ceram. Soc. v.79 no.12 Effect of Cr₃C₂ Addition on Sintering SiC-TiC Composite K.W.Chae;K.Niihara;D.Y.Kim https://doi.org/10.1111/j.1151-2916.1996.tb08109.x
  11. J. Mater. Sci. v.31 no.10 SiC-TiC and SiC-TiB₂ Composites Densified by Liquid Phase Sintering K.S.Cho;Y.W.Kim;H.J.Choi;J.G.Lee https://doi.org/10.1007/BF00354442
  12. J. Am. Ceram. Soc. v.79 no.6 In-situ Toughened SiC-TiC Composites K.S.Cho;H.J.Choi;J.G.Lee;Y.W.Kim https://doi.org/10.1111/j.1151-2916.1996.tb08791.x
  13. Kor. J. Ceram. v.6 no.2 Effect of Additive amount on Microstructure and Fracture Toughness of SiC-TiC Composites M.J.Kim;Y.W.Kim;W.Kim;H.J.Lim;D.H.Cho
  14. J. Euro. Ceram. Soc. v.21 Effect of Initial-phase Content of SiC on Microstructure and Mechanical Properties of SiC-TiC Composites H.G.An;Y.W.Kim;J.G.Lee https://doi.org/10.1016/S0955-2219(00)00160-6
  15. J. Kor. Ceram. Soc. v.38 no.12 R-curve Behavior of Silicon Carbide-Titanium Carbide Composites H.G.An;Y.W.Kim
  16. J. Mater. Sci. Lett. v.15 Mechanical Properties of SiC/TiC Composites by Hot Isostatic Pressing D.Shaoming;J.Dongliang;T.Shouhong;G.Jingkun
  17. J. Mater. Sci. v.35 no.22 Pressureless Sintering of SiC-TiC Composites with Improved Fracture Toughness Y.W.Kim;S.G.Lee;Y.I.Lee https://doi.org/10.1023/A:1004848828322
  18. J. Kor. Ceram. Soc. v.31 no.8 Manufacture of SiC-TiC System Composite by Reaction-bonded Sintering I.S.Han;H.S.Kim;S.K.Woo;J.H.Yang;Y.J.Chung
  19. J. Kor. Ceram. Soc. v.32 no.9 Study on Synthesis and Characterization of (Ti·Si)C Composite by SHS Microwave H.B.Lee;S.H.Kweon;J.W.Lee;Z.S.Ahn
  20. J. Ceram. Soc. Jpn. v.104 no.7 Sintering Behavior of TiC Reinforced SiC Composites Doped with Ti and C X.Tong;T.Yano;T.Iseki https://doi.org/10.2109/jcersj.104.594
  21. J. Kor. Ceram. Soc. v.38 no.4 Fabrication of SiC-TiC Composites via Mechnochemical Synthesis H.J.Choi;K.M.Lee;H.J.Kim;G.G.Lee
  22. Nature(London) v.217 Sintering in Gas Discharges C.E.G.Bennet;N.A.Mckinnon;L.S.Williams https://doi.org/10.1038/2171287a0
  23. Am. Ceram. Soc. Bull. v.67 no.10 An Innovative Technique for Plasma Processing of Ceramics and Composite Materials K.Upadhya
  24. J. Mater. Process. v.56 no.1-4 PAS(Plasma Activated Sintering) : Transient Sintering Process Control for Rapid Consolidation of Powders K.Yamazaki;S.H.Risbud;H.Aoyama;K.Shoda https://doi.org/10.1016/0924-0136(96)85122-3
  25. J. Mater. Res. v.7 no.10 Plasma Activated Sintering of Additive-free AIN Powders to Near-theoretical Density in 5 Minutes J.R.Groza;S.H.Risbud;K.Yamazaki https://doi.org/10.1557/JMR.1992.2643
  26. Philos. Mag. B. v.69 no.3 Clean Grain Boundaries in Aluminium Nitride Ceramics Densified without Additives by a Plasma-activated Sintering Process S.H.Risbud;J.R.Groza;M.J.Kim https://doi.org/10.1080/01418639408240126
  27. J. Mater. Res. v.10 no.2 Retention of Nanostructure in Aluminum Oxide by very Rapid Sintering at 1150°C S.H.Risbud;C.H.Sha;A.K.Mukherjee;M.J.Kim;J.S.Bow;R.A.Holl https://doi.org/10.1557/JMR.1995.0237
  28. J. Ceram. Soc. Jpn. v.103 no.7 Effect of Spark Plasma Sintering on Densification and Mechanical Properties of Silicon Carbide N.Tamari;T.Tanaka;K.Tanaka;I.Kondoh;M.Kawahara;M.Tokita https://doi.org/10.2109/jcersj.103.740
  29. J. Mater. Sci. Lett. v.14 Fabrication of Silicon Nitride Nanoceramics by Spark Plasma Sintering T.Nishimura;M.Mitomo;H.Hirotsuru;M.Kawakara https://doi.org/10.1007/BF00258160
  30. J. Am. Ceram. Soc. v.85 no.8 Spark Plasma Sintering of Alumina Z.Shen;M.Johnsson;Z.Zhao;M.Nygren https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  31. J. Kor. Ceram. Soc. v.38 no.8 The Effect of La-silicon Oxynitride on the Densification of Si₃N₄ Ceramics by Spark Plasma Sintering K.S.Cho;S.Kim;S.H.Beak;H.J.Choi;J.G.Lee
  32. J. Am. Ceram. Soc. v.83 no.5 Strengthening of Porous Alumina by Pulse Electric Current Sintering and Nanocomposites Processing S.T.Oh;K.I.Tajima;M.Ando;T.Ohji https://doi.org/10.1111/j.1151-2916.2000.tb01380.x
  33. J. Mater. Sci. Lett. v.17 Rapid Rate Sintering of Nano-grained ZrO₂-based Composites Using Pulse Electric Current Sintering Method M.Yishimura;T.Ohji;M.Sando;Y.Nihara https://doi.org/10.1023/A:1026476430465
  34. J. Soc. Powder Tech. Jpn. v.30 no.11 Trends in Advanced SPS Spark Plasma Sintering Systems and Technology M.Tokita https://doi.org/10.4164/sptj.30.11_790
  35. J. Am. Ceram. Soc. v.64 The β→α Transformation in Polycrystalline SiC : Ⅲ, The Thickening of α Plates L.U.Ogbuji;T.E.Mitchell;A.H.Heuer https://doi.org/10.1111/j.1151-2916.1981.tb09583.x
  36. J. Am. Ceram. Soc. v.81 Effect of Initial α-phase Content on Microstructure and Mechanical Properties of Sintered Silicon Carbide Y.W.Kim;M.Mitomo;H.Emoto;J.G.Lee https://doi.org/10.1111/j.1151-2916.1998.tb02748.x
  37. J. Am. Ceram. Soc. v.66 no.8 Mechanical properties of Fine-Grained Substoichiometric Titanium Carbide D.L.Miraclea;H.A.Lipsitt https://doi.org/10.1111/j.1151-2916.1983.tb10098.x

Cited by

  1. Effects of Al, B and C Additives on Microstructure and Mechanical Properties of Spark-Plasma-Sintered SiC Ceramics vol.287, pp.1662-9795, 2005, https://doi.org/10.4028/www.scientific.net/KEM.287.329
  2. Microstructure and Mechanical Properties of Spark-Plasma-Sintered SiC-TiC Composites vol.287, pp.1662-9795, 2005, https://doi.org/10.4028/www.scientific.net/KEM.287.335