• Title/Summary/Keyword: Ti-Ta-Nb

Search Result 125, Processing Time 0.029 seconds

Nanotube Morphology Control of Ti-30Nb-xTa Alloys by Applied Voltages

  • Kim, Eun-Sil;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.78-78
    • /
    • 2013
  • This study has investigated the nanotube morphology control of Ti-30Nb-xTa alloys by applied voltages. The morphology changed from small diameter to large diameter with increasing applied voltage, whereas, changed from large diameter to small diameter with decreasing applied voltage.

  • PDF

Characteristics of the Nitride Layers Formed on Ti and Ti-10wt.%Ta-10wt.%Nb Alloys by Plasma Nitriding (플라즈마 이온질화처리 된 Ti 및 Ti-10wt.%Ta-10wt.%Nb 합금의 표면에 형성된 질화층의 특성)

  • Kim, Dong-Hun;Lee, Doh-Jae;Lee, Kwang-Min;Kim, Min-Ki;Lee, Kyung-Ku;Park, Bum-Su
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.124-128
    • /
    • 2008
  • The nitride layer was formed on Ti and Ti-10 wt.%Ta-10 wt.%Nb alloy by a plasma nitriding method. Temperature was selected as the main experimental parameter for plasma nitriding. XRD, EDX, and hardness test were employed to analyze the evolution and material properties of the layer. The SEM observation of TiN nitride layer revealed that the thickness of nitride layer tended to increase with increasing temperature. ${\delta}-TiN$, ${\varepsilon}-Ti_{2}N$ and ${\alpha}-Ti$ phases were detected by XRD analysis and the preferred orientation of TiN nitride layer was obviously observed at (220) plane with increasing temperature. From XRD analysis after step polishing the nitride specimens treated at $850^{\circ}C$, as polishing from the surface, TiN and $Ti_{2}N$ phases decreased gradually. After polishing the surface by $4{\um}m$, a small amount of $Ti_{2}N$ and ${\alpha}-Ti$ phases were observed. The adhesive strength test result indicated that adhesive strength increased with increasing temperature.

Occurrence and Chemical Composition of Ti-bearing Minerals from Drilling Core (No.04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 함 티타늄 광물들의 산상과 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.185-197
    • /
    • 2023
  • The Gubong Au-Ag deposit consists of eight lens-shaped quartz veins. These veins have filled fractures along fault zones within Precambrian metasedimentary rock. This has been one of the largest deposits in Korea, and is geologically a mix of orogenic-type and intrusion-related types. Korea Mining Promotion Corporation drilled into a quartz vein (referred to as the No. 6 vein) with a width of 0.9 m and a grade of 27.9 g/t Au at a depth of -728 ML by drilling (No. 90-12) in the southern site of the deposit, To further investigate the potential redevelopment of the No. 6 vein, another drilling (No. 04-1) was carried out in 2004. In 2004, samples (wallrock, wallrock alteration and quartz vein) were collected from the No. 04-1 drilling core site to study the occurrence and chemical composition of Ti-bearing minerals (ilmenite, rutile). Rutile from mineralized zone at a depth of -275 ML occur minerals including K-feldspar, biotite, quartz, calcite, chlorite, pyrite in wallrock alteration zone. Ilmenite and rutile from ore vein (No. 6 vein) at a depth of -779 ML occur minerals including white mica, chlorite, apatite, zircon, quartz, calcite, pyrrhotite, pyrite in wallrock alteration zone and quartz vein. Based on mineral assemblage, rutile was formed by hydrothermal alteration (chloritization) of Ti-rich biotite in the wallrock. Chemical composition of ilmenite has maximum values of 0.09 wt.% (HfO2), 0.39 wt.% (V2O3) and 0.54 wt.% (BaO). Comparing the chemical composition of rutile at a depth -275 ML and -779 ML, Rutile at a depth of -779 ML is higher contents (WO3, FeO and BaO) than rutile at a depth of -275 ML. The substitutions of rutile at a depth of -275 ML and -779 ML are as followed : rutile at a depth of -275 ML Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4++ (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, rutile at a depth of -779 ML 2 (Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf 4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+, respectively. Based on these data and chemical composition of rutiles from orogenic-type deposits, rutiles from Gubong deposit was formed in a relatively oxidizing environment than the rutile from orogenictype deposits (Unsan deposit, Kori Kollo deposit, Big Bell deposit, Meguma gold-bearing quartz vein).

Microstructural Characterization and Dielectric Properties of Barium Titanate Solid Solutions with Donor Dopants

  • Kim, Yeon-Jung;Hyun, June-Won;Kim, Hee-Soo;Lee, Joo-Ho;Yun, Mi-Young;Noh, S.J.;Ahn, Yong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1267-1273
    • /
    • 2009
  • The correlation between the sintering temperature and dielectric properties in the $Nb^{5+}\;and\;Ta^{5+}$ doped BaTi$O_3$ solid solutions have been investigated. The samples were sintered at temperatures ranging from 1250 to 1350 ${^{\circ}C}$ for 4 h in air. SEM, XRD and SEM/EDS techniques were used to examine the structure of the samples with particular focus on the incorporation of $Nb^{5+}\;and\;Ta^{5+}$ ions into the BaTi$O_3$ crystal lattice. The X-ray diffraction peaks of (111), (200) and (002) planes of BaTi$O_3$ solid solution doped with different fractions of $Nb^{5+}\;and\;Ta^{5+}$ were investigated. The dielectric properties were analyzed and the relationship between the properties and structure of doped BaTi$O_3$ was established. The fine-grain and high density of the doped BaTi$O_3$ ceramics resulted in excellent dielectric properties. The dielectric properties of this solid solutions were improved by adding a small amount of dopants. The transition temperature of the 1.0 mole% $Ta^{5+}$ doped BaTi$O_3$ solid solution was $\sim$110 ${^{\circ}C}$ with a dielectric constant of 3000 at room temperature. At temperatures above the Curie temperatures, the dielectric constant followed the Curie-Weiss law.

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process (초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동)

  • Song, Junwoo;Han, Junhee;Kim, Song-Yi;Seok, Jinwoo;Kim, Hyoseop
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

Deformation Behaviour of Ti-8Ta-3Nb During Hot Forging

  • Lee Kyung Won;Ban Jae Sam;Kim Sun Jin;Cho Kyu Zong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • Ti-8Ta-3Nb, as a new biomaterial, was prepared by cast and swaging process. Their deformation behavior of Ti-8Ta-3Nb alloy has been characterized on the basis of its flow stress variation obtained from the true strain rate compression testing in the temperature of $700-900^{\circ}C$ and strain rate of $0.001-10\;s^{-1}$. At the strain rates lower than $0.1\;s^{-1}$ and the all temperature ranges which consist of two phase ${\alpha}+{\beta}$ as well as single ${\beta}$ phase fields, the flow curves show a small degree of flow softening behavior. In contrast, the shapes of the flow curves at other strain rates indicate unstable behavior. The shapes of the flow curves were similar in both as-cast and swaged specimen as well as in both ${\alpha}+{\beta}$ phase and ${\beta}$ phase. The flow stress data did not obey the kinetic rate equation over the entire regime of testing but a good fit has been obtained in the intermediate range of temperatures ($750-850^{\circ}C$). In this range, a stress exponent value of about 7.7 in as-cast specimens and about 6.2 in swaged specimens with an apparent activation energy of about 300 kJ/mol and about 206 kJ/mol respectively have been evaluated.