• Title/Summary/Keyword: Ti-Cu alloys

Search Result 88, Processing Time 0.024 seconds

Martensitic Transformation Behaviors of Gas Atomized Ti50Ni30Cu20 Powders (Gas atomization으로 제조된 Ti50Ni30Cu20 합금 분말의 상변태 거동)

  • Kim, Yoen-Wook;Chung, Young-Soo;Choi, Eun-Soo;Nam, Tae-Hyun;Im, Yeon-Min
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.26-30
    • /
    • 2011
  • For the fabrication of bulk near-net-shape Ti-Ni-Cu shape memory alloys, consolidation of Ti-Ni-Cu alloy powders are useful because of their brittle property. In the present study, $Ti_{50}Ni_{30}Cu_{20}$ shape memory alloy powders were prepared by gas atomization and martensitic transformation temperatures and microstructures of those powders were investigated as a function of powder size. The size distribution of the powders was measured by conventional sieving, and sieved powders with the specific size range of 25 to $150\;{\mu}m$ were chosen for this examination. XRD analysis showed that the B2-B19 martensitic transformation occurred in the powders. In DSC curves of the as-atomized $Ti_{50}Ni_{30}Cu_{20}$ powders as a function of powder size, only one clear peak was found on each cooling and heating curve. The martensitic transformation start temperature($M_s$) of the $25-50\;{\mu}m$ powders was $31.5^{\circ}C$. The $M_s$ increased with increasing powder size and the difference of $M_s$ between $25-50\;{\mu}m$ powders and $100-150\;{\mu}m$ powders is only $1^{\circ}C$. The typical microstructure of the rapidly solidified powders showed cellular morphology and very small pores were observed in intercellular regions.

Effect of Cu Content and Annealing Temperature on the Shape Memory Effect of NiTi-based Alloy (구리함량과 어닐링 온도가 NiTi 합금의 형상기억효과에 미치는 영향)

  • Hyeok-Jin Yang;Hyeong Ju Mun;Ye-Seul Cho;Jun-Hong Park;Hyun-Jun Youn;In-Chul Choi;Myung-Hoon Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.79-85
    • /
    • 2024
  • The effects of annealing heat treatment and the addition of Cu element on the shape memory effect of the NiTi-based alloy were investigated by analyzing differential scanning calorimeter results and characterizing recovery rate through 3D scanning after Vickers hardness test. Through 3D scanning of impressions after Vickers hardness test, the strain recovery rates for specimens without annealing treatment and annealed specimens at 400, 450, and 500℃ were measured as 45.96%, 46.76%, 52.37%, and 43.57%, respectively. This is because as the annealing temperature increases, both B19' and NiTi2 phases, which can impede martensitic transformation, are incorporated within the NiTi matrix. Particularly, additional phase transformation from R-phase to B19' observed in specimens annealed at 400 and 450℃ significantly contributes to the improvement in strain recovery rates. Additionally, the results regarding the Cu element content indicate that when the total content of Ni and Cu is below 49.6 at.%, the precipitation of fine B19' and NiTi2 phases within the matrix can greatly influence the transformation enthalpy and temperature range, resulting in relatively lower strain recovery rates in NiTi alloys with a small amount of Cu element produced in this study.

Experimental studies on the fatigue life of shape memory alloy bars

  • Casciati, Sara;Marzi, Alessandro
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.73-85
    • /
    • 2010
  • The potential offered by the thermo-mechanical properties of shape memory alloys (SMA) in structural engineering applications has been the topic of many research studies during the last two decades. The main issues concern the long-term predictability of the material behaviour and the fatigue lifetime of the macro structural elements (as different from the one of wire segments). The laboratory tests reported in this paper are carried out on bar specimens and they were planned in order to pursue two objectives. First, the creep phenomenon is investigated for two different alloys, a classical Ni-Ti alloy and a Cu-based alloy. The attention is then focused on the Cu-based alloy only and its fatigue characteristics at given temperatures are investigated. Stress and thermal cycles are alternated to detect any path dependency.

Microstructure and Mechanical Properties of SUS Alloy for Wear Resistant Materials (내마모용 SUS 소결재의 미세조직과 기계적 성질)

  • Cho, Kwon Koo;Kim, Bo Su;Ahn, In Shup;Hur, Bo Young;Yang, Sung Chul;Kim, Hae Shup
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.181-195
    • /
    • 1993
  • The purpose of this research is to improve the density and the hardness of the SUS alloys for wear resistant materials. The dependence of the density, shrinkage ratio and hardness of various alloys on the sintering temperature and composition were examined. Alloys added with 3% Ti shows the most proper sintering properties of shrinkage ratio and the hardness which is enough to substitute for existing high price materials.

  • PDF

Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals (은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징)

  • Huh, D.;Kim, D.H.;Chun, B.S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF

RESEARCH ON SHAPE MEMORY ALLOYS IN MEXICO

  • Jara, David Rios
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.1-1
    • /
    • 1992
  • Shape Memory Alloys have attracted the interest of a great number of researchers in the world, and Mexico is not the exception. Research in this field started ten years ago, and is actually an active line covering the classical Cu-based and Ti-Ni alloys, but also the new Fe-based alloys. Although more basic studies have been performed at the present time, interest for applied research and technological goals is increasing. In this work we present a series of studies carried on these Shape Memory Alloys by the groups in Mexico, and explain what the interest of our groups are in the next future in this are of the Materials Science. Interdisciplinary work has been necessary in the characterization of the different alloys, and multiple techniques have been used, like Mossbauer spectroscopy, thermoelectric power, electron microscopy, ultrasound techniques, neutron and x-ray diffraction, calorimetry, among others. Collaboration With other groups in Europe and in the United States have become highly useful and productive, and some examples of such activities are also reported.

  • PDF

Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes (Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성)

  • Song, MyoungYoup;Kwon, IkHyun;Lee, DongSub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.

Changes in High-temperature Coefficient of Thermal Expansion of Artificial Aging Heat-treated Al-Si-Mg-Cu-(Ti) Alloys (시효 열처리 된 Al-Si-Mg-Cu-(Ti) 합금의 고온 열팽창 계수 변화)

  • Choi, Se-Weon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.226-232
    • /
    • 2021
  • The relationship between precipitation and coefficient of thermal expansion of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments were studied by the thermodynamic analyzer (TMA) and differential scanning calorimetry (DSC). Solution heat treatment of the alloy was carried out at 535℃ for 6 h followed by water quenching, and the samples were artificially aged in the air at 180℃ and 220℃ for 5 h. The coefficient of thermal expansion (CTE) curve showed some residual strain and decreased with increasing aging temperature. The CTE curves changed sharply in the temperature range of 200℃ to 400℃, and the corresponding peak shifted for the aged samples due to the change in the precipitation behavior of the secondary phase. These transformation peaks in the aged sample are related to the volume of the precipitation of the Si phase as determined by DSC analysis. The change in CTE is mainly caused by the precipitation of the Si phase in the Al-Si alloy, and the size of the change occurs simultaneously with the size of the precipitate.

The Influence of Alloying Elements Addition on the Electrical and Mechanical Properties of Cu-Ni-Si-P Alloy (Cu-Ni-Si-P 합금의 기계적 및 전기적 성질에 미치는 첨가원소의 영향)

  • Kim, Seung-Ho;Yum, Young-Jin;Park, Dong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • For connector material applications, the influence alloying elements of Mn, Cr, Fe, and Ti and cold rolling reduction on the mechanical property, electrical conductivity and bendiability of Cu-Ni-Si-P alloy was investigated. The hot rolled plates were solution treated at $980^{\circ}C$ for 1.5 h, quenched into water, cold rolled by 10% and 30% reduction in thickness, and then aged at $440{\sim}500^{\circ}C$ for 3, 4, 5 times. respectively. Cu-Ni-Si-P-x alloys cold rolled by 10 reduction before heat treatment have a good bendability compare to cold rolled by 30 reduction. Cu-3.4Ni-0.8Si-0.03P-0.1Ti shows the peak strength value of 759 MPa, an electrical conductivity of 39%IACS, an elongation of 10% and a hardness of 256 Hv aged at $440^{\circ}C$ for 6 hrs. Thus it is suitable for lead frame and connector.