• Title/Summary/Keyword: Ti-Cr-Mo alloys

Search Result 29, Processing Time 0.024 seconds

Microstructure and Mechanical Properties of Ni-Cr-Mo Based Dental Cast Iron for Porcelain-Fused-to-Metal Firing (도재소부용 Ni-Cr-Mo계 치과용 합금의 미세조직 및 기계적성질)

  • Choi, D.C.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.3
    • /
    • pp.120-125
    • /
    • 2007
  • The microstructure, mechanical properties and melting range of Ni-Cr-Mo based alloys were investigated to develop Be-free Ni-Cr-Mo base dental alloys for Porcelain-Fused-to-Metal Firing(PFM). All as-cast alloys showed dendritic structure. Rockwell hardness of 20Cr7Mo was increased with addition of Si and Ti. On the contrary, it was decreased with addition of Co. The duplex alloying elemental addition such as 3Co + xTi, 2Si + xCo and 2Si + xTi to 20Cr7Mo resulted in much increase of hardness. Rockwell hardness and compressive strength for 20Cr3CoSiTi or 17Cr6CoSiTi alloy that add Si-Ti had similar values compared to the commercial alloys. Melting range for 20Cr3CoSiTi and 17Cr6CoSiTi alloy that add Si-Ti showed similar or lower than commercial alloys. In conclusion, 20Cr3CoSiTi and 17Cr6CoSiTi alloys can be applied for commercial use.

Surface Analysis of Ni-Cr and Co-Cr Alloys with Addition of Ti and Mo for Dental CAD/CAM Use (Ti 및 Mo 첨가에 따른 치과 CAD/CAM용 Ni-Cr 및 Co-Cr합금의 표면분석)

  • Moon, Dae-Sun;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.139-148
    • /
    • 2018
  • In this study, surface analysis of Ni-Cr and Co-Cr alloys with addition of Ti and Mo for dental CAD/CAM use has been researched experimentally. The surface characteristics of the alloys were examined by Vickers hardness test, bonding strength test, surface roughness test, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction spectroscopy. The shrinkage of the sintered Ni-Cr alloy alloy was slightly larger than that of Ni-Cr-Ti alloy, and larger than Co-Cr alloy. Also, the addition of Mo showed a tendency to decrease shrinkage somewhat. From the result of XRD analysis, NiCr, $Ni_3Cr$ and $Ni_3Ti$ were observed in the sintered Ni-13Cr-xTi and Ni-13Cr-xMo alloys. In addition, ${\sigma}-CrCo$, $Co_2Mo_3$ and $TiCo_2$ were formed in the sintered Co-Cr-xTi and Co-Cr-xMo alloys. Surface hardness of Ti and Mo added alloy was higher than those of Ni-Cr and Co-Cr alloy. The bond strength between sintered alloy and porcelain was $16.1kgf/mm^2$ for Ni-13Cr alloy, $17.8kgf/mm^2$ for Ni-13Cr-5Ti alloy, and $8.2kgf/mm^2$ for Ni-13Cr-10Ti alloy, respectively.

Characteristics of Hydrogen Storage in Ti-Cr-Mo and Ti-Cr-V bcc Alloys (Ti-Cr-Mo계 및 Ti-Cr-V계 bcc 합금의 수소저장특성에 관한 연구)

  • You, J.H.;Cho, S.W.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • The characteristics of hydrogen storage have been investigated in the Ti-Cr-Mo and Ti-Cr-V ternary alloys with bcc structure. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The lattice parameters, microstructures and phases of the alloys were examined by SEM, EDX and XRD, and the Pressure-Composition isotherms of the alloys were measured. From these data the relationship of the maximum and effective hydrogen storage capacities vs. chemical composition, lattice parameter and the radius of tetrahedral site were analyzed and discussed. The results showed that all of these alloy, in the range of the this study, had mainly bcc solid solutions with small amount of Ti segregation due to a lower melting point of Ti compared with other elements. Lattice parameters of the alloys were very near to the atomic average values of lattice parameters of the constituent elements. It was also found that maximum hydrogen storage capacities of the Ti-Cr-Mo alloys increased with increasing Ti content and the radius of tetrahedral site but the effective hydrogen storage capacities decreased after showing the maximum. The hydrogen storage capacities of the Ti-Cr-V alloys were almost same even though the V contens were quite different from alloy to alloy and this could be attributed to the almost same Ti/Cr ratio of the alloys. The maximum effective hydrogen storage capacity of the Ti-Cr-Mo alloys was revealed at Ti content of about 40${\sim}$50 at% and radius of tetrahedral site of 0.43${\sim}$0.45 nm. The Ti-Cr-V alloys showed the hydrogen storage capacities of 3.0 wt% and effective hydrogen storage capacities of 1.5 wt%.

Mechanical Properties and Microstructure of Aluminum Alloys with Dispersed Nanoscale Quasicrystalline Particles

  • Fujita, Masashi;Kimura, Hisamichi;Inoue, Akihisa
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.708-709
    • /
    • 2006
  • New Al-based alloys with very high ultimate tensile strength were developed in high Al concentration range of 91-95 at.% for Al-Fe-Cr-Ti-M (M: Co and Mo) systems and Al-Fe-Cr-Mo-Ti-Co system by the dispersion of nanoscale quasicrystalline particles in Al phase. The effect of adding elements, M was discussed in the viewpoint of stability of super-cooled liquid state and formation ability of quasicrystalline phase. The P/M Al-Fe-Cr-Ti-M alloys with dispersed nanoscale quasicrystalline particles exhibited ultimate tensile strength of 350MPa at 573K and 200MPa at 673K.

  • PDF

Microstructures and Mechanical Properties of Beryllium(Be)-free Ni-Cr-Mo based Alloys for Metal-Ceramic Crown (베릴륨(Be)이 미 첨가된 치과도재소부용 Ni-Cr-Mo계 합금의 미세조직 및 기계적 성질 특성)

  • Song, Kyung-Woo;Go, Eun-Kyoung;Lee, Jung-Hwan;Jung, Jong-Hyun;Noh, Hak;Han, Jae-Ick
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.321-329
    • /
    • 2006
  • The popularity of Ni-Cr-Mo based metal alloys for metal-ceramic crown have increased recently because of low price, superior yield strength and rigidity. the use of these alloys give them the potential advantage of thinner copping with the required rigidity for long span bridges. The purpose of this study was to assess the microstructures and mechanical properties of Ni-Cr-Mo-(Si,Al,Nb,Zr,Ti.Cu,Mm) based Alloys not containing beryllium(Be) related toxic effects. The abtained results indicated that as-cast these specimen alloys showed compositional and microstructural differences, and mechanical properties values of Ni69Cr20Mo5Si2Al4 alloy among these specimen alloys was found to be superior to those of commercial Ni-Cr based alloy using in market place today.

  • PDF

Analysis of the Effects of Ti, Si, and Mo on the Resistance to Corrosion and Oxidation of Fe-18Cr Stainless Steels by Response Surface Methodology (반응표면분석법을 활용한 Fe-18Cr 스테인리스강의 부식 및 산화 저항성에 미치는 Ti, Si, Mo의 영향 분석)

  • Jang, HeeJin;Yun, Kwi-Sub;Park, Chan-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.741-748
    • /
    • 2010
  • We studied the corrosion and oxidation properties of Fe-18Cr-0.4Nb-(0.1~0.6)Ti-(1~3)Si-(0.5~2)Mo stainless steel. The resistance to general and pitting corrosion was evaluated and the results were analyzed by Response Surface Methodology (RSM) as a function of alloy composition. The effects of alloy composition and heat treatment on the oxidation resistance were also examined. Mo increased both general corrosion resistance and pitting corrosion resistance. Si improved the resistance of the alloys to pitting corrosion. Si was also beneficial for general corrosion resistance of the alloys containing Mo at more than 1 wt.%. However, Mo was detrimental when its content was lower. Effects of Ti on general corrosion properties appeared to be weak and a high concentration of Ti appeared to deteriorate pitting resistance. The thickness of the oxidation scale increased and adhesion of the scale worsened as the temperature increased from $800^{\circ}C$ to $900^{\circ}C$. Weight gain of the alloys due to oxidation at $900^{\circ}C$ clearly showed that the resistance to oxidation is improved by annealing at $860^{\circ}C$ and an increase of Si content.

Design of Nickel Alloys Using the Theoretical Values Calculated from the Electronic State Energies (에너지 전자상태 계산으로 도출된 이론값을 이용한 니켈 합금 설계)

  • Baek, Min-Sook;Kang, Pub-Sung;Baek, Kyeong-Cheol;Kim, Byung-Il;Yoon, Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.642-646
    • /
    • 2015
  • Super alloys, which can be divided into three categories, i.e. Ni-base, Co-base, and Fe-base alloys, are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, their chemistry and processing parameters need to be carefully designed. In this study, we designed a new Ni alloy to prevent corrosion due to water vapor and gases at high temperatures. The new alloy was designed using the theoretical value of the resulting energy electronic state calculation($DV-X{\alpha}$ method). The components that were finally used were Cr, Mo, and Ti, with Ni as a base. For these alloys, elements were selected in order to compare their values with that of the average theoretical basis for an Inconel 625 alloy. Finally, two kinds of Ni alloy were designed: Ni-28Cr-4Mo-2Ti and Ni-20Cr-10Mo-1Ti.

Development of Ti-Fe-X metal hydride electrode by mechanical alloying (기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구)

  • Ha, Chang-Jin;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF

Effects of pH and Chloride Concentration on Corrosion Behavior of Duplex Stainless Steel and Titanium Alloys Ti 6Al 2Nb 1Ta 1Mo at Elevated Temperature for Pump Impeller Applications

  • Aymen A., Ahmed;Ammar Yaseen, Burjes;Ammar Yaseen, Burjes
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.454-465
    • /
    • 2022
  • The objective of this study was to determine effects of temperatures and pH of sodium chloride solution with MgCl2 ions on corrosion resistance of duplex stainless-steel X2CrNiMoN22-5-3 (DSS) and Ti 6Al 2Nb1Ta1Mo (Ti). Effects of sodium chloride concentration on corrosion resistance were also studied. Corrosion behavior and pitting morphology of duplex stainless steel (DSS) and Ti alloys were evaluated through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). It was found that a decrease in pH significantly reduced the corrosion resistance of both alloys. Changes in chloride concentration and temperature had more substantial impact on corrosion behavior of DSS than on Ti alloys. Pitting corrosion was formed on DSS samples under all conditions, whereas crevice corrosion was developed on Ti samples with the presence of magnesium chloride at 90 ℃. In conclusion, magnesium chloride ions in an exceedingly strong acidity solution appear to interact with re-passivation process at the surface of these alloys and influence the resulting surface topography.

Effects of Heat Treatment and Ti addition on Microstructures in Modified Invar Alloys (개량형 인바합금의 미세조직에 미치는 열처리 및 Ti 첨가 영향)

  • Huh, Min-Sun;Lee, Jung-Han;Lee, Chan-Gyu;Lee, Jae-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.412-419
    • /
    • 2000
  • There has been a considerable attention on Invar alloys due to its low thermal expansion property. A low thermal expansion property of Invar alloys, lower than $10^{-6}$ near the room temperature, is attractive for electric transmission lines and precision machine tools. However, the expansion property of Invar alloys is limited below about 520K, and mechanical properties are relatively low to apply to electric transmission line. In order to improve mechanical properties in this alloy, Ti alloying element was added to the $Ni_{38}-Mo_2-Cr_1-Fe$ invar alloy. The microstructure Ti added alloy showed finer than that of the unalloyed one. It was found that the (Mo, Ti), Mo carbide formed by Ti addition obstacled grain growth by pinning effect and supplyed recrystallization sites during heat-treatment. Optimum heat-treatment conditions with Ti addition were also discussed in the modified Invar alloy.

  • PDF