• 제목/요약/키워드: Ti surface treatment

검색결과 530건 처리시간 0.024초

표면형상 변화에 따른 염료감응 태양전지의 전기화학적 특성 (Electrochemical Properties of Dye-sensitized Solar Cells with Improving the Surface Structure)

  • ;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.153-158
    • /
    • 2012
  • We use UV(ultraviolet)-$O_3$ treatment to increase the surface area and porosity of $TiO_2$ films in dye-sensitized solar cells (DSSCs). After the UV-$O_3$ treatment, surface area and porosity of the $TiO_2$ films were increased, the increased porosity lead to amount of dye loading and solar conversion efficiency was improved. Field emission scanning electron microscopy images clearly showed that the nanocrystalline porosity of films were increased by UV-$O_3$ treatment. The Brunauer, Emmett, and Teller surface area of the $TiO_2$ films were increased from $0.71cm^2/g$ to $1.31cm^2/g$ by using UV-$O_3$ treatment for 20 min. Also, UV-$O_3$ treatment of $TiO_2$ films significantly enhanced their solar conversion efficiency. The efficiency of the films without treatment was 4.9%, and was increased to 5.6% by UV-$O_3$ treatment for 20 min. Therefore the process enhanced the solar conversion efficiency of DSSCs, and can be used to develop high sensitivity DSSCs.

Shear bond strength of composite resin to titanium according to various surface treatments

  • Lee, Seung-Yun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.68-74
    • /
    • 2009
  • STATEMENT OF PROBLEM. When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE. The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS. The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera$^{TM}$, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at $25^{\circ}C$ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-$5^{(R)}$, United Calibration, USA). These values were statistically analyzed. RESULTS. 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION. Within the limitations of this study, all methods of surface treatment used in this study are clinically available.

APPLICATION OF DISPROPORTIONATION REACTION TO SURFACE TREATMENT

  • Oki, Takeo
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.478-481
    • /
    • 1996
  • Disproportionation reaction is very important and interesting reaction to be applied to such surface treatment as metal, alloy, compound coating, a surface etching and so on. In gaseous system, the reaction of Al chloride is applied to Al and Al alloy coating, and the similar reaction of Ti chloride is also used for Ti, Ti alloy and Ti compound coating. As for aqueous system, this reaction is utilized to such metal coat as Sn etc. and metal etching such as Cu, Fe and so on. Also in molten salts system, this reaction has many application for surface treatment like metal, alloy and compound coatings for corrosion, wear, heat resistance and so forth. For instance, carbide film, nitride film, boride film, alloy film, quite new different film from the components of substrate material are coated in single and multiple component film system by the disproportionation reaction.

  • PDF

Unexpected Chemical and Thermal Stability of Surface Oxynitride of Anatase TiO2 Nanocrystals Prepared in the Afterglow of N2 Plasma

  • Jeon, Byungwook;Kim, Ansoon;Kim, Yu Kwon
    • Applied Science and Convergence Technology
    • /
    • 제26권4호
    • /
    • pp.62-65
    • /
    • 2017
  • Passivation of surface defects by the formation of chemically inert structure at the surface of $TiO_2$ nanocrystals can be potentially useful in enhancing their photocatalytic activity. In this regard, we have studied the surface chemical states of $TiO_2$ surfaces prepared by a treatment in the afterglow of $N_2$ microwave plasma using X-ray photoemission spectroscopy (XPS). We find that nitrogen is incorporated into the surface after the treatment up to a few atomic percent. Interestingly, the surface oxynitride layer is found to be chemically stable when it's in contact with water at room temperature (RT). The surface nitrogen species were also found to be thermally stable upon annealing up to $150^{\circ}C$ in the atmospheric pressure. Thus, we conclude that the treatment of oxide materials such as $TiO_2$ in the afterglow of $N_2$ plasma can be effective way to passivate the surface with nitrogen species.

유리 표면 Etching을 이용한 염료감응 태양전지의 특성 개선 연구 (A Study on the Characteristics Improvement of Dye-Sensitive Solar Cells Using Glass Surface Etching)

  • 김해마로;이돈규
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.128-132
    • /
    • 2021
  • 본 논문에서는 표면 Texturing 방법 중 습식 에칭법을 이용하여 태양전지에 사용되는 전극의 표면을 거칠게 처리하였고, 표면 처리 후 TiO2 산화물 반도체를 사용한 염료 감응 태양전지를 제작하였다. 표면 처리된 전극을 에칭 시간에 따른 분광특성을 측정 분석하였으며, 에칭 시간에 따라 제작한 TiO2 염료 감응 태양전지의 전기적 특성을 평가함으로써 표면 처리에 따른 태양전지의 효율 향상에 관한 연구를 진행하였다. 결과적으로 전극 표면을 10분간 에칭 처리한 태양전지의 경우 기존 효율과 비교하였을 때, 약 27.46[%] 개선됨을 확인할 수 있었다.

치과용 티타늄 임플란트의 골융합 증진을 위한 체어사이드 친수성 표면처리방법 (Chair-side surface treatment method for inducing hydrophilicity in titanium dental implant)

  • 이정환;전수경;이해형
    • 대한치과의사협회지
    • /
    • 제54권12호
    • /
    • pp.985-995
    • /
    • 2016
  • Titanium (Ti) has been widely used for dental implant due to great biocompatibility and bonding ability against natural alveolar bone. A lot of titanium surface modification has been introduced in dentistry and, among them, methods to introduce micro/nano-roughened surface were considered as clinically approved strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with topography oriented favors in cell attachment, chair-side surface treatment with reproducibility of micro/nano-topography is introduced as next strategy to further enhance cellular functionalities. Extensive research has been investigated to study the potential of micro/nano-topography preserved chair-side surface treatment for Ti dental implant. This review will discuss ultraviolet, low level of laser therapy and non-thermal atmospheric pressure plasma on Ti dental implant with micro/nano-topography as next generation of surface treatment due to its abilities to induce super-hydrophilicity or biofunctionality without change of topographical cues.

  • PDF

RF 스퍼터링 증착된 $TiO_{2}$ 박막의 염료감응형 태양전지 적용 연구 (Sputter Deposition and Surface Treatment of $TiO_{2}$ films for Dye-Sensitized Solar Cells using Reactive RF Plasma)

  • 김미정;서현웅;최진영;조재석;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.309-312
    • /
    • 2007
  • Sputter deposition followed by surface treatment was studied using reactive RF plasma as a method for preparing titanium oxide($TiO_{2}$) films on indium tin oxide(ITO) coated glass substrate for dye-sensitized solar cells(DSSCs). Anatase structure $TiO_{2}$ films deposited by reactive RF magnetron sputtering under the conditions of $Ar/O_{2}$(5%) mixtures, RF power of 600W and substrate temperature of $400^{\circ}C$ were surface-treated by inductive coupled plasma(ICP) with $Ar/O_{2}$ mixtures at substrate temperature of $400^{\circ}C$, and thus the films were applied to the DSSCs, The $TiO_{2}$ Films made on these exhibited the BET specific surface area of 95, the pore volume of $0.3cm^{2}$ and the TEM particle size of ${\sim}25$ nm. The DSSCs made of this $TiO_{2}$ material exhibited an energy conversion efficiency of about 2.25% at $100mW/cm^{2}$ light intensity.

  • PDF

TiN 중간층을 이용한 수처리용 BDD 전극 (Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

염료감응형 태양전지 광전극의 초음파 열처리를 통한 광전효율 개선에 관한 연구 (A Study of Photo-electric Efficiency Improvement using Ultrasonic and Thermal Treatment on Photo-electrode of DSC)

  • 김희제;김용철;최진영;김호성;이동길;홍지태
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.803-807
    • /
    • 2008
  • A making process of DSC(dye sensitized solar cell) was presented. In general, Photo electrodes of DSC was made by using colloid paste of nano $TiO_2$ and processing of Doctor-blade printing and high temperature sintering for porous structure. These methods lead to cracks on $TiO_2$ surface and ununiform of $TiO_2$ thickness. This phenomenon is one factor that makes low efficiency to cells. After $TiO_2$ printing on TCO glass, a physical vibration was adapted for reducing ununiform of $TiO_2$ thickness. And a thermal treatment at low temperature(under $75^{\circ}C$) was adapted for reducing cracks on $TiO_2$ surface. In this paper, we have designed and manufactured an ultrasonic circuit (100W, frequency and duty variable) and a thermal equipment. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation and thermal heating for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

다양한 기판에 형성된 BDD 전극의 폐수처리 특성 (Performance of BDD Electrodes Prepared on Various Substrates for Wastewater Treatment)

  • 권종익;유미영;김서한;송풍근
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.53-57
    • /
    • 2019
  • Stability and activity of boron doped diamond (BDD) electrode are key factors for water treatment. In this study, BDD electrodes were prepared on various substrates such as Nb, Si, Ti, and $TiN_x/Ti$ by hot filament chemical vapor deposition (HFCVD) method. BDD/Ti film showed the delamination between BDD and Ti substrate due to the formation of TiC layer caused by diffusion of carbon. On the other hand, $BDD/TiN_x/Ti$ showed remarkably improved stability, compared to BDD/Ti. It was confirmed that $TiN_x$ intermediate layer act as barrier layer for diffusion of carbon. High potential window of 2.8 eV was maintained on the $BDD/TiN_x/Ti$ electrode and, better wastewater treatment capability and longer electrode working life than BDD/Nb, BDD/Si and BDD/Ti were obtained.