• Title/Summary/Keyword: Ti passivation

Search Result 50, Processing Time 0.024 seconds

Corrosion Behavior of Titanium for Implant in Simulated Body Fluids (인공 체액 조건에서 임플랜트용 티타늄 소재의 부식 특성)

  • 이중배;최기열
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.110-118
    • /
    • 2004
  • The corrosion of pure titanium (CP- Ti Grade 2) and titanium alloy (Ti6Al4V ELI) were studied under various conditions of simulated body fluids. The static immersion test and the electrochemical test were performed in accordance with ISO 10271 : 2001. For the electrochemical test, the open circuit potential was monitored as a function of time, and the cyclic polarization curve was recorded. The corrosion resistance was evaluated from the values of corrosion potential, passivation current density, breakdown potential, and the shape of hysteresis etc. The effects of alloy type, surface condition, temperature, oxygen, and constituents in the fluids such as acid, chloride were estimated. Both specimens had extremely low dissolution rate in the static immersion test. They showed strong passivation characteristics in the electrochemical test. They maintained negligible current density throughout the wide anodic potential range. The passive layer was not broken up to 2.0 V (vs. SCE). The hysteresis and the shift of passivation potential toward the anodic direction was observed during the reversed scan. The passivation process appeared to be accelerated by oxygen in air or that dissolved in the fluids. The passivation also proceeded without oxygen by the reaction of constituents in the fluids. Acid or chloride in the fluids, specially later weakened the passive layer, and then induced higher passivation current density and less shift of passivation potential in the reversed scan. CP-Ti Grade 2 was more reactive than Ti6Al4V ELI in the fluids containing acid or chloride, but thicker layer produced on its surface provided higher corrosion resistance.

ALD를 이용하여 살펴본 CdSe/CdS Quantum Dot-sensitized Solar Cell에서의 TiO2 Passivation 효과

  • Park, Jin-Ju;Lee, Seung-Hyeop;Seol, Min-Su;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.370-370
    • /
    • 2011
  • ZnO 나노 라드 위에 Quantum dot을 형성하고 최종적으로 TiO2를 Atomic Layer Deposition방법으로 증착하여, 그 passivation 효과가 solar cell의 효율에 미친 영향에 대한 실험을 진행하였다. 암모니아 솔루션을 이용한 Hydrothermal 방법으로 수직한 1차원 형태의 ZnO 나노라드를 TCO 기판 위에 성장시킨다. 여기에 잘 알려진 SILAR와 CBD 방법으로 CdS, CdSe 양자점을 증착한다. 그리고 amorphous TiO2로 표면을 덮는 과정을 거치는데, TiO2가 좁은 간격으로 형성된 ZnO라드 구조 위에서 균일하고 정밀하게 증착되도록 하기 위해 Atomic Layer Deposition을 이용하였다. 사용된 precursor는 Titanium isopropoxide와 H2O이며, 실험상에서 0~5 nm 두께의 TiO2 박막을 형성해 보았다. 다양한 분석 방법을 통해 TiO2/QDs/ZnO의 shell-shell-core 구조를 조사했다. (Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS)). 이를 solar cell에 적용하고 I-V curve를 통해 그 효율을 확인하였으며, Electrochemical Impedance Spectroscopy (EIS)를 통해서 재결합 측면에서 나타나는 변화 양상을 확인하였다.

  • PDF

Effects of Niobium Addition on the Corrosion Behavior of Ti Alloys in NaCl Solution (NaCl 용액에서 Nb 첨가가 Ti 합금의 부식 거동에 미치는 영향)

  • Kim, E.S.;Kim, W.G.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the effect of niobium addition on the passivation behavior of Ti alloys in NaCl solution was investigated using various electrochemical methods. An ${\alpha}$-phase in Ti alloy was transformed into a ${\beta}$-phase and martensite structure decreased as Nb content increased. The corrosion and passivation current density($+300mV_{SCE}$) decreased as Nb content increased, and thereby a stable passive film was formed on the Ti alloy. Potential of Ti-xNb alloy in the passive region increased, whereas, current density decreased with time from results of potentiostatic and galvanostatic tests. Also, the corrosion morphology showed the smaller pits as Nb content increased. Consequently, Ti alloy contained high Nb content showed a good resistance to pitting corrosion in 0.9% NaCl solution.

A Study on the Etching Characateristics of TiW Films using BCl$_3$/SF6/ gas chemistries (BCl$_3$/SF6 gas chemistries에 의한 TiW막의 식각특성 연구)

  • 권광호;김창일;윤선진;김상기;백규하;남기수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.1-8
    • /
    • 1997
  • The surface properties after plasma etching of TiW alloy using the chemistries of BCl$_{3}$ and SF$_{6}$ gases with varying mixing ratio have been investigated using XPS(X-ray photoelectron spectrocopy). The elements existed on the etched sampled have been extracted with BCL$_{3}$/SF$_{6}$ ratio and their chemical binding states have also been analysed. It was confirmed that the thickness of native oxide formed on the TiW films is thinner than 10nm by using Ar sputtering. At the same time, the roughness of etched surface has been esamnied using AFM (atomic force microscopy). on the basis of the basis of this results, the relations between the caanges of oxygen contents detected by XPS and the rouhness of etched surface have been discussed. And the etch rate and etched profile of Tiw films have been examined and the changes of the etch rate and etched prfile have been discussed with XPS results. From XPS results, the role of passivation layer consisted of Ti-S compound with XPS results. From XPS results, the role of passivation layer consisted of Ti-S compound has been proposed. Ti-S compound seems to make a role of passivation layer that surpresses Ti-O formation.ion.

  • PDF

IGZO TFT Stability Improvement Based on Various Passivation Materials (다양한 Passivation 물질에 따른 IGZO TFT Stability 개선 방법)

  • Kim, Jaemin;Park, Jinsu;Yoon, Geonju;Cho, Jaehyun;Bae, Sangwoo;Kim, Jinseok;Kwon, Keewon;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.6-9
    • /
    • 2020
  • Thin film transistors (TFTs) with large-area, high mobility, and high reliability are important factors for next-generation displays. In particular, thin transistors based on IGZO oxide semiconductors are being actively researched for this application. In this study, several methods for improving the reliability of a-IGZO TFTs by applying various materials on a passivation layer are investigated. In the literature, inorganic SiO2, TiO2, Al2O3, ZTSO, and organic CYTOP have been used for passivation. In the case of Al2O3, excellent stability is exhibited compared to the non-passivation TFT under the conditions of negative bias illumination stress (NBIS) for 3 wavelengths (R, G, B). When CYTOP passivation, SiO2 passivation, and non-passivation devices were compared under the same positive bias temperature stress (PBTS), the Vth shifts were 2.8 V, 3.3 V, and 4.5 V, respectively. The Vth shifts of TiO2 passivation and non-passivation devices under the same NBTS were -2.2 V and -3.8 V, respectively. It is expected that the presented results will form the basis for further research to improve the reliability of a-IGZO TFT.

Crystallization of Passivation Glass for Electronic Devices (전자장치용 Passivation 유리의 결정화에 관한 연구)

  • 손명모;박희찬;이헌수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.107-114
    • /
    • 1993
  • Zinc-Borosilicate(ZnO 65.0wt%, B2O3 21.5wt%, SiO2 9.0wt%, PbO or tiO2 4wt%) passivation glasses were studied using differential thermal analysis(DTA), scanning electron microscopy(SEM) observations, X-ray diffraction (XRD) patterns and measurement of thermal expansion coefficients. Passivation glasses containing 4wt% TiO2 and 4wt% PbO had crystallization temperature of 680~73$0^{\circ}C$ and major crystalline phases were identified by X-ray diffraction as $\alpha$-ZnO.B2O3 and $\alpha$-5ZnO.2B2O3. As increasing firing temperature, the size of crystalline phases increased by observation of SEM. The thermal expansion coefficient of crystallized glass frits was smaller than that of unfired glass.

  • PDF

CdSe/CdS QDSSC에서 $TiO_2$ 증착 효과

  • Park, Jin-Ju;Lee, Seung-Hyeop;Seol, Min-Su;Kim, Hui-Jin;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.380-380
    • /
    • 2011
  • ZnO 나노라드 위에 양자점을 증착한 후 그 위에 $TiO_2$를 ALD방법으로 증착하여 그 passivation 효과가 solar cell 효율에 미친 영향에 대한 실험을 진행하였다. Hydrothermal 방법으로 수직한 1차원 형태의 ZnO 나노라드를 성장시킨다. 여기에 SILAR 방법을 거쳐서 CdS 양자점을 증착시키고, 후에 CBD를 이용하여 CdSe 양자점을 증착시킨다. 여기에 마지막으로 amorphous $TiO_2$로 표면을 덮는 과정을 거치는데, $TiO_2$가 ZnO 라드 위에 균일하고 정밀하게 증착되도록 하기 위해서 Atomic Layer Deposition을 이용하였다. 다양한 분석 방법을 통해 $TiO_2$/CdSe/CdS/ZnO 구조를 조사하였으며, ZnO 나노라드 위에 $TiO_2$가 정교하게 올라간 것을 확인한 후에 solar cell에 적용하여 그 효율을 확인하였다.

  • PDF

Water vapor permeation properties of $Al_2O_3/TiO_2$ passivation layer on a poly (ether sulfon) substrate

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Han, Dong-Seok;Sin, Sae-Yeong;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.160-160
    • /
    • 2010
  • Organic electronic devices require a passivation layer to ensure sufficient lifetime. Specifically, flexible organic electronic devices need a barrier layer that transmits less than $10^{-6}\;g/m^2/day$ of water and $10^{-5}\;g/m^2/day$ of oxygen. To increase the lifetime of organic electronic device, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. In this study, the passivation layer was deposited using single-process PEALD. The passivation layer, in our case, was a bilayer system consisting of $Al_2O_3$ films and a $TiO_2$ buffer layer on a poly (ether sulfon) (PES) substrate. Because the deposition temperature and plasma power have a significant effect on the properties of the passivation layer, the characteristics of the $Al_2O_3$ films were investigated in terms of density under different deposition temperatures and plasma powers. The effect of the $TiO_2$ buffer layer also was also addressed. In addition, the water vapor transmission rate (WVTR) and organic light-emitting diode (OLEDs) lifetime were measured after forming a bilayer composed of $Al_2O_3/TiO_2$ on a PES substrate.

  • PDF

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

Variation of AC Impedance of the $TiS_2$ Composite/SPE/Li Cell with Cycling ($TiS_2$ Composite/SPE/Li Cell의 충방전에 따른 AC 임피던스의 변화)

  • Kim, J.U.;Gu, H.B.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1034-1038
    • /
    • 1995
  • The purpose of this study is to research and develop $TiS_2$ composite cathode for lithium polymer battery(LPB). $TiS_2$ electrode represent a class of insertion positive electrode used in Li secondary batteries. In this study, we investigated preparation of $TiS_2$ composite cathode and AC impedance response of $TiS_2$ composite/SPE/Li cells as a function of state of charge(SOC) and cycling. The resistance of B type cell using $TiS_2PEO_8LiClO_4PC_5EC_5$ composite cathode was lower than that of A type cell using $TiS_2PEO$ composite cathode. The cell resistance of B type cell is high for the first few percent discharge, decreases for midium discharge and then increases again toward the end of discharge. We believe the magnitude of the cell resistance is dominated by passivation layer impedance and small cathode resistance. AC impedance results indicate that the cell internal resistance increase with cycling, and this is attributed to change of passivation layer impedance with cycling. The passivation layer resistance($R_f$) of B type cell decreases for the 2nd cycling and then increases again with cycling. Redox coulombic efficiency of B type cell was about 141% at 1st cycle and 100% at 12th cycle. Also, $TiS_2$ specific capacity was 115 mAh/g at 12 cycle.

  • PDF