• Title/Summary/Keyword: Ti implant

Search Result 256, Processing Time 0.024 seconds

Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant (생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성)

  • Chang, Kap-Sung;Kim, Heung-Joong;Park, Joo-Cheol;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF

Powder Sintering for Fabrication of Porous Ti Implants (다공성 티타늄 임플란트 제조를 위한 분말 소결)

  • Kim, Yung-Hoon;Lee, Sun-Kyoung
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.337-340
    • /
    • 2010
  • Purpose: This study was performed to compare sintering conditions for fabrication of porous Ti implant. Methods: The porous Ti implant samples were fabricated by sintering of spherical Ti powders in vacuum and atmosphere conditions. Surface morphology, composition and phase were analyzed by FE-SEM, EDX and XRD. Results: Sintered Ti implant in the vacuum consisted of particles connected in three dimensions by clear necking without excessive oxide layers. However, sintered Ti implant in atmosphere was formed excessive oxide layers with non-stoichiometric compounds. Conclusion: The porous Ti implant can be sintered in vacuum condition preferably.

Effects of Blasting and Acidic Treatment on the Corrosion Characteristics of Dental Implant Fabricated with Cp-Ti and Ti-6Al-4V Alloy (Cp-Ti와 Ti-6Al-4V 합금으로 제조된 치과용 임플란트의 부식특성에 관한 블라스팅과 산세처리의 영향)

  • Moon, Young-Pil;Choe, Han-Cheol;Park, Su-Jung;Kim, Won-Gi;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.190-197
    • /
    • 2006
  • The effects of blasting and acidic treatment on the corrosion characteristics of dental implant fabricated with Cp-Ti and Ti-6Al-4V alloy have been researched by using electrochemical methods. The fabricated implants were cleaned and sandblasted by $Al_2O_3$ powder and then acidic treatment was carried out in nitric acid solution. The surface morphology were observed using scanning electron microscope. The corrosion behaviors were investigated using potentiosat and EIS in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The potentio-dynamic test in 0.9% NaCl indicated that the corrosion potential of blasting and acidic treated implant was lower than that of non treated implant, but current density was higher than that of non treated implant. From the cyclic potentiodynamic test results of Ti implant, the passivation current density of blasting and acidic treated implant slightly higher than that of non treated implant. From A.C. impedance test results in 0.9% NaCl solution, polarization resistance($R_p$) value of blasting and acidic treated implant was lower than that of non treated implant. In case of blasting and acidic treated implant surface, the pits were observed in valley and crest of implant surface.

The effect of Er:YAG laser irradiation on the surface microstructure and roughness of $TiO_2$ implant (Er:YAG 레이저 조사가 산화 티타늄 블라스팅 임플란트 표면 미세 구조 및 거칠기에 미치는 영향)

  • An, Jang-Hyuk;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.67-74
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate the effect of Er:YAG laser on microstructure and roughness of $TiO_2$ blasting implant surface. Materials and Methods: Ten $TiO_2$ blasting implant were used in this experiment. One implant was control group, and nine $TiO_2$ blasting implant surfaces were irradiated with Er:YAG laser under 100 mJ/pulse, 140 mJ/pulse, and 180 mJ/pulse condition for 1 min, 1.5 min, and 2 min respectively. Optical interferometer and scanning electron microscopy was utilized to measure roughness and microstructure of specimens. Results: The surface roughness was decreased after Er:YAG laser irradiation in all groups, but there was no significant difference. 100 mJ/pulse and 140 mJ/pulse group did not alter the $TiO_2$ blasting implant surface in SEM study while 180 mJ/pulse group altered the $TiO_2$ blasting implant surface. Implant surfaces showed melting, microfracture and smooth surface in 180 mJ/pulse group. Conclusion: Detoxification of implant surface using Er:YAG laser must be irradiated with proper energy output and irradiation time to prevent implant surface alteration.

Surface Characteristics of Porous Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering in a Low Vacuum Atmosphere (저진공 분위기 전기방전소결에 의해 제조된 다공성 Ti-6Al-4V 임플란트의 표면특성 연구)

  • Hyun, C.Y.;Huh, J.K.;Lee, W.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.178-182
    • /
    • 2006
  • A single electro-discharge-sintering (EDS) pulse (1.0 kJ/0.7 g), from a $300{\mu}F$ capacitor, was applied to atomized spherical Ti-6Al-4V powder in a low vacuum to produce porous-surfaced implant compacts. A solid core surrounded by a porous layer was formed by a discharge in the middle of the compact. XPS (X-ray photoelectron spectroscopy) was used to study the surface characteristics of the implant material. C, O, and Ti were the main constituents, with smaller amounts of Al, V, and N. The implant surface was lightly oxidized and was primarily in the form of $TiO_2$ with a small amount of metallic Ti. A lightly etched EDS implant sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V implant surface also contained small amounts of aluminum oxide in addition to $TiO_2$. However, V detected in the EDS Ti-6Al-4V implant surface, did not contribute to the formation of the oxide film..

A study of loading property of the bioactive materials in porous Ti implants (다공성 티타늄 임플란트의 생리활성물질 담지특성에 관한 연구)

  • Kim, Yung-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.281-286
    • /
    • 2013
  • Purpose: Surface modification is important techniques in modern dental and orthopedic implants. This study was performed to try embedding of bioactive materials in porous Ti implants. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. It's diameter and height were 4mm and 20mm. Embedding process was used to suction and vacuum chamber. Loading properties of porous Ti implants were evaluated by scanning electron microscope(SEM), confocal laser scanning microscope(CLSM), and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $10.253{\mu}m$ and 17.506%. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. This porous structure can be embedded to bioactive materials. Therefore bioactive materials will be able to embedding to porous Ti implants. Bioactive materials embedding in the porous Ti implant will induced new bone faster.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

A 3 year-retrospective study of survival rate in single $Br{\aa}nemark$ $TiUnite^{TM}$ implant (단일치아 결손시 $TiUnite^{TM}$ 표면처리한 임플란트의 생존율에 대한 후향적 단기연구)

  • Yang, Seung-Min;Park, Sun-Hye;Shin, Seung-Yun;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.671-679
    • /
    • 2007
  • Background: $TiUnite^{TM}$ is a highly crystalline and phosphate enriched titanium oxide surface which has a unique porous surface structure. This improved implant surface enhances bone response and reduces healing period. It also assures early stability of implant. These help to increase the success of implant. The aim of this study is to evaluate the survival rate of $TiUnite^{TM}$ surfaced single implant. Materials and methods: A retrospective analysis of 89 $TiUnite^{TM}$ surfaced implants replacing a single tooth was assessed according to their dental record. The age of the patients ranged from 17 to 82 years (mean age: $45.8{\pm}14.6)$. Data were recorded regarding the survival rate of these implants. Results: Fifty-two implants (57%) were placed in the maxilla, and 37 (43%) in the mandible. Over 75% were placed in the posterior area. Of the placed implants, 67% were the wide type. while 25% were the regular type and only 8% were of the narrow type. The single implants produced an overall clinical survival rate of 96.6% over the observation period (mean 17.9 months). Among 89 implants, only 2 implants were removed and one implant was submerged. Conclusion: According to these data, $TiUnite^{TM}$ surfaced implant in a single tooth restoration showed favorable survival rate although this study was done in a short term period.

A Study of Multi-Surface Treatments on the Porous Ti Implant for the Enhancement of Bioactivity (다공성 티타늄 임플란트의 생체적합성 증진을 위한 복합 표면처리에 관한 연구)

  • Cho, Yu-Jeong;Kim, Yung-Hoon;Jang, Hyoung-Soon;Kang, Tae-Ju;Lee, Won-Hee
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.229-234
    • /
    • 2008
  • Porous Ti implant samples were fabricated by the sintering of spherical Ti powders in a high vacuum furnace. To increase their surface area and biocompatibility, anodic oxidation and a hydrothermal treatment were then applied. Electrolytes in a mixture of glycerophosphate and calcium acetate were used for the anodizing treatment. The resulting oxide layer was found to have precipitated in the phase form of anatase $TiO_2$ and nano-scaled hydroxyapatite on the porous Ti implant surface. The porous Ti implant can be modified via an anodic oxidation method and a hydrothermal treatment for the enhancement of the bioactivity, and current multi-surface treatments can be applied for use in a dental implant system.

Release behavior of embedding materials on the porous Ti implants (다공성 티타늄 임플란트의 담지물질 방출거동)

  • Kim, Yung-Hoon;Kim, Nam-Joong
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • Purpose: This study was performed to investigate the release behavior of bioactive materials as a BMP-2 embedding on the porous titanium implant. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. Specimens diameter and height were 4mm and 10mm. Embedding materials were used to stamp ink. Sectional images, porosity and release behavior of porous Ti implants were evaluated by scanning electron microscope(SEM), mercury porosimeter and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $8.993{\mu}m$ and 8.918%. Embedding materials were released continually and slowly. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. Therefore bioactive materials will be able to embedding to porous Ti implants. If the development of the fusion implant of the bioactive material will be able to have the chance to several patients.