• Title/Summary/Keyword: Ti carbide.

Search Result 244, Processing Time 0.03 seconds

Synthesis of Ultrafine Titanium Carbide Powder by Novel Thermo-Reduction Process (신 열환원 공정에 의한 초미립 티타늄 카바이드 분말 합성)

  • ;S.V. Alexandrovskii
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.390-394
    • /
    • 2003
  • Ultra fine titanium carbide particles were synthesized by novel metallic thermo-reduction process. The vaporized TiC1$_4$+$CCl_4$ gases were reacted with liquid magnesium and the fine titanium carbide particles were then produced by combining the released titanium and carbon atoms. The vacuum treatment was followed to remove the residual phases of MgC1$_2$ and excess Mg. The stoichiometry, microstructure, fixed and carbon contents and lattice parameter were investigated in titanium carbide powders produced in various reaction parameters.

Effects of deposition conditions on the properties of AlTiN films (증착 조건이 AlTiN 박막의 특성에 미치는 영향)

  • Kim, Seong-Hwan;Yang, Ji-Hun;Song, Min-A;Jeong, Jae-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.162-162
    • /
    • 2015
  • 증착 조건이 AlTiN 박막의 특성에 미치는 영향에 대하여 평가하였다. 한편, 공정변수의 하나로 빗각 증착을 적용하여 AlTiN 박막을 제조하고 그 특성을 평가하였다. Al-25at.%Ti 합금타겟을 음극 아크 소스에 장착하여 AlTiN 박막을 코팅하였다. 기판은 stainless steel(SUS304)과 초경(tungsten carbide; WC)을 사용하였다. 음극 아크 소스에 인가되는 전류가 낮을수록 AlTiN 박막 표면에 존재하는 거대입자의 밀도가 낮아졌으며, 공정 압력과 기판 전압이 높을수록 AlTiN 박막의 표면에 존재하는 거대입자의 밀도가 낮아지는 경향을 보였다. 코팅 공정 중 질소 유량을 변화했지만 AlTiN 박막의 특성에 변화는 없었다. AlTiN 박막 증착 시 빗각을 적용한 결과, $60^{\circ}$의 빗각을 적용한 다층 박막에서 약 33 GPa의 경도를 보였다. AlTiN 박막의 내산화성을 평가한 결과, $600^{\circ}C$이상에서 안정된 내산화성을 확인할 수 있었다.

  • PDF

Characteristics of AlTiN coatings deposited by cathodic arc plasma process (음극 아크 플라즈마 공정으로 증착된 AlTiN 코팅막의 특성)

  • Kim, Seong-Hwan;Yang, Ji-Hun;Song, Min-A;Jeong, Jae-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.67-67
    • /
    • 2015
  • 음극 아크 플라즈마 공정을 이용하여 증착된 AlTiN 코팅막의 공정 변화에 따른 물리적 특성 변화를 평가하였다. 또한 빗각 증착을 적용하여 제조한 AlTiN 코팅막의 특성을 평가하였다. Al-25at.%Ti 합금타겟을 음극 아크 소스에 장착하여 AlTiN 박막을 코팅하였다. 기판은 stainless steel(SUS304)과 초경(tungsten carbide; WC)을 사용하였다. 음극 아크 소스에 인가되는 전류가 낮을수록 AlTiN 코팅막 표면에 존재하는 거대입자의 밀도가 낮아졌으며, 공정 압력과 기판 전압이 높을수록 AlTiN 코팅막의 표면에 존재하는 거대입자의 밀도가 낮아지는 경향을 보였다. 코팅 공정 중 질소 유량을 변화했지만 AlTiN 코팅막의 특성은 변하지 았았다. AlTiN 코팅막 증착 시 빗각을 적용한 결과, $60^{\circ}$의 빗각을 적용한 다층 코팅막에서 약 33 GPa의 경도를 보였다. AlTiN 코팅막의 내산화성을 평가한 결과, $600^{\circ}C$이상에서 안정된 내산화성을 확인할 수 있었다.

  • PDF

Effect of Alloying Elements and Homogenization Treatment on Carbide Formation Behavior in M2 High Speed Steels (합금성분변화와 균질화처리에 따른 M2 고속도강의 탄화물 형성거동)

  • Ha, Tae Kwon;Yang, Eun Ig;Jung, Jae Young;Park, Shin Wha
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.589-597
    • /
    • 2010
  • In the present study, the effect of variation in alloying elements on the carbide formation behavior during casting and homogenization treatment of M2 high speed steels was investigated. M2 high speed steels of various compositions were produced by vacuum induction melting. Contents of C, Cr, W, Mo, and V were varied from the basic composition of 0.8C, 0.3Si, 0.2Mn, 4.0Cr, 6.0W, 5.0Mo, and 2.0V in weight percent. Homogenization treatment at $1150^{\circ}C$ for 1.5 hr followed by furnace cooling was performed on the ingots. Area fraction and chemical compositions of eutectic carbide in as-cast and homogenized ingots were analyzed. Area fraction of eutectic carbide appeared to be higher in the ingots with higher contents of alloying elements the area fraction of eutectic carbide also appeared to be higher on the surface regions than in the center regions of ingots. As a result of the homogenization treatment, $M_2C$ carbide, which was the primary eutectic carbide in the as-cast ingots, decomposed into thermodynamically stable carbides, MC and $M_6C$. The latter carbide was found to be the main one after homogenization. Fine carbides uniformly distributed in the matrix was found to be MC type carbide and coarsened by homogenization.

Cutting Conditions of Carbide Insert Drill (초경 인서트 드릴의 절삭 조건에 관한 연구)

  • Choi, Sung-Yun;Hwang, Chul-Woong;Lee, Sang-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.10-16
    • /
    • 2021
  • Drilling is a crucial process that takes up a significant amount of weight during machining operations. In addition, drill tip-type tools and related operations have been developed for manufacturing industries to achieve economic efficiency. In this study, SM45C carbon steel, widely used for machine structures, was utilized as the working material after quenching and tempering. Insert-tip types of carbide tools, such as TiN and TiAlN, were used as tool materials. Drilling conditions such as the spindle revolution, feed rate, step of cut, and tool diameter were used to measure roughness, roundness, and straightness using the orthogonal array table statistical method. The surface roughness, roundness, and straightness characteristics based on the conditions were analyzed using ANOVA. The results showed that the spindle speed and feed rate were the main factors influencing carbide insert-tip drilling under the same conditions as the experimental conditions.

Selective Carbonization and Nitridation of Titanium in (ZrTi)O2 Powders Synthesized by Copreciptation Method

  • Shin Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.662-666
    • /
    • 2005
  • Solid solutions of $(Zr/Ti)O_2$ were prepared in powder form by the coprecipitation technique. After mixing with carbon or exposing to nitrogen gas at elevated temperature, titanium cations selectively diffused out from the oxide compound to form titanium carbide (TiC) or titanium nitride (TiN), respectively. TiN formed strong interfacial contacts between the oxide grains. In contrast, TiC formed as small crystallites on oxide grains but did not bind the matrix grains together. TiN therefore played a role in strengthening the interparticle bonding, but TiC weakened the bonding between grains. Partial diffusion of titanium cations also led to nanolayered structure being formed between the oxide grains, which provided weak interfacial layers that fractured in a step-wise fashion.

Influence of Carbon Vacancies on CO Chemisorption on TiC(001): A Theoretical Study

  • Kang, Dae-Bok
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • The extended $H{\ddot{u}}ckel$ method is employed to analyze the interaction of carbon monoxide with the TiC(001) surfaces, both perfect and containing carbon vacancies. CO exhibits a similar ${\sigma}$-donation interaction for both $Ti_{25}C_{25}$ and $Ti_{25}C_{23}$ clusters, as deduced from the fact that the populations of the CO $5{\sigma}$ orbital are identical upon adsorption, but it bonds more strongly with the $Ti_{25}C_{23}$ than with the $Ti_{25}C_{25}$ because the metal d electron density in $Ti_{25}C_{23}$ provides ${\pi}$ back-bonding interactions with CO that are absent in $Ti_{25}C_{25}$. This work suggests that a difference in reactivity toward CO of stoichiometric TiC and TiC with carbon defects is connected with the occupancy of $2{\pi}^*$ orbitals that leads to a significant weakening of the C-O bond.

Structural and Mechanical Properties of Multilayered CVD TiC/TiCN Coatings with Variations of Multilayer Period

  • Park, Geun-Woo;Kwon, Hyuck-Sang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.638-639
    • /
    • 2006
  • Multilayered coatings on tungsten carbide cutting tools are widely used for enhancing cutting performance. In this paper, we review the CVD TiC/TiCN multilayer as a function of the multilayer period. The TiC/TiCN multilayers in initial stage show preferred (220) orientation but shifts to (200) orientation with decreasing multilayer period. The nanohardness of TiC/TiCN multilayers were found to increase with decreasing multilayer period and shows a maximum of 23.8 GPa at a period = 33.5 nm.

  • PDF

Preparation of Ultrafine C/N Controled TiCxNy Powders by Magnesium Reduction (마그네슘환원에 의한 C/N 조성제어 초미립 TiCxNy 분말 합성)

  • Lee, Dong-Won;Kim, Byoung-Kee;Yun, Jung-Yeul;Yu, Ji-Hoon;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2010
  • The ultrafine titanium carbonitride ($TiC_xN_y$) particles below 100 nm in mean size, including various carbon and nitrogen contents (x=0.55~0.9, y=0.1~0.5), were successfully synthesized by new Mg-thermal reduction process. Nanostructured sub-stoichiometric titanium carbide ($TiC_x$) particles were initially produced by the magnesium reduction of gaseous $TiCl_4+x/2C_2Cl_4$ at $890^{\circ}C$ and post heat treatments in vacuum were performed for 2 hrs to remove residual magnesium and magnesium chloride mixed with $TiC_x$. Finally, well C/N-controled $TiC_xN_y$ phases were successfully produced by nitrification heat treatment under normal $N_2$ gas atmosphere at $1150^{\circ}C$ for 2 hrs. The values of purity, mean particle size and oxygen content of produced particles were about 99.3%, 100 nm and 0.2 wt.%, respectively.

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.