DOI QR코드

DOI QR Code

Preparation of Ultrafine C/N Controled TiCxNy Powders by Magnesium Reduction

마그네슘환원에 의한 C/N 조성제어 초미립 TiCxNy 분말 합성

  • Lee, Dong-Won (Powder Technology Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Byoung-Kee (School of Materials Science and Engineering, Ulsan University) ;
  • Yun, Jung-Yeul (Powder Technology Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Yu, Ji-Hoon (Powder Technology Research Group, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Yong-Jin (Powder Technology Research Group, Korea Institute of Materials Science (KIMS))
  • 이동원 (한국기계연구원 부설 재료연구소) ;
  • 김병기 (울산대학교 첨단소재공학부) ;
  • 윤중열 (한국기계연구원 부설 재료연구소) ;
  • 유지훈 (한국기계연구원 부설 재료연구소) ;
  • 김용진 (한국기계연구원 부설 재료연구소)
  • Published : 2010.04.28

Abstract

The ultrafine titanium carbonitride ($TiC_xN_y$) particles below 100 nm in mean size, including various carbon and nitrogen contents (x=0.55~0.9, y=0.1~0.5), were successfully synthesized by new Mg-thermal reduction process. Nanostructured sub-stoichiometric titanium carbide ($TiC_x$) particles were initially produced by the magnesium reduction of gaseous $TiCl_4+x/2C_2Cl_4$ at $890^{\circ}C$ and post heat treatments in vacuum were performed for 2 hrs to remove residual magnesium and magnesium chloride mixed with $TiC_x$. Finally, well C/N-controled $TiC_xN_y$ phases were successfully produced by nitrification heat treatment under normal $N_2$ gas atmosphere at $1150^{\circ}C$ for 2 hrs. The values of purity, mean particle size and oxygen content of produced particles were about 99.3%, 100 nm and 0.2 wt.%, respectively.

Keywords

References

  1. S. Zhang: Mater. Sci. Eng., A163 (1993) 141.
  2. N. V. Alexeev, I. L. Balikhin, E. N. Kurkhin, A. V. Samokhin, E. V. Troiskaya and V. N. Troiskij: Fizikai Khimiya Obrabotki Materialov., 1 (1995) 247.
  3. T. Licko, V. Figusch and J. Puchyiva: J. Eurp. Ceram. Soc., 5 (1989) 257. https://doi.org/10.1016/S0955-2219(89)80009-3
  4. J. Xiang, Z. Xie, Y. Huang and H. Xiao: J. Eurp. Ceram. Soc., 20 (2000) 933. https://doi.org/10.1016/S0955-2219(99)00210-1
  5. V. D. Parkhomenko, G. N. Serdyuk and Y. I. Kransnokutskii: Phys. Chem. Mater. Treat., 20 (1986) 429.
  6. B. Rauschenbach: J. Mater. Sci., 21 (1986) 395. https://doi.org/10.1007/BF01145500
  7. M. Eslamloo-Grami and Z. A. Munir: J. Mater. Res., 11 (1996) 2968. https://doi.org/10.1557/JMR.1996.0377
  8. G. W. Elger, D. E. Traut, G. J. Slavens and S. J. Gerdemann: Metall. Trans., 20B (1989) 493.
  9. F.-S. Yin, L. Zhou, Z.-F. Xu, B. Xue and X.-B. Jiang: J. Alloys Comp., 470 (2009) 369. https://doi.org/10.1016/j.jallcom.2008.02.073
  10. R. Aghabazadeh, A. R. Mirhabibi, B. Rand, S. Banijamali, J. Pourasad and M. Ghahari: Surf. Sci. 601 (2007) 2881. https://doi.org/10.1016/j.susc.2006.12.038
  11. D. W. Lee, J. H. Ahn and H. Jung: J. Mater. Res., 22 (2007) 233. https://doi.org/10.1557/jmr.2007.0024
  12. D. W. Lee, S.Alexandrovskii and B. K. Kim: Mater. Chem. Phys., 88 (2004) 23. https://doi.org/10.1016/j.matchemphys.2004.02.005
  13. D. W. Lee, J. C. Kim, Y. J. Kim and B. K. Kim: J. Korean Powder Metall. Inst., 16 (2009) 98. https://doi.org/10.4150/KPMI.2009.16.2.098

Cited by

  1. Characteristics of Stainless Steel Composites with Nano-sized TiCxNy vol.18, pp.3, 2011, https://doi.org/10.4150/KPMI.2011.18.3.290