• Title/Summary/Keyword: Ti(Al,O)/$Al_2O_3$ powder

Search Result 112, Processing Time 0.041 seconds

High-temperature oxidation of Ti3(Al,Si)C2 nano-laminated compounds in air

  • Lee, Hwa-Shin;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.147-148
    • /
    • 2007
  • The compound, Ti3(Al,Si)C2, was synthesized by hot pressing a powder mixture of TiCX, Al and Si. Its oxidation at 900 and 1000 oC in air for up to 50 h resulted in the formation of rutile-TiO2, -Al2O3 and amorphous SiO2. During oxidation, Ti diffused outwards to form the outer TiO2 layer, and oxygen was transported inwards to form the inner mixed layer.

  • PDF

A Study on the Evaluation of Adsorption Characteristics of VOCs on TiO2 and Al2O3 and Investigation of the Thermal Durability by Molding Various Structures (TiO2와 Al2O3의 기상 VOCs 흡착 특성 평가 및 다양한 구조체로의 성형을 통한 열적 내구성 확보에 관한 연구)

  • Hwang, In-Hyuck;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • In this study, the adsorption performance of vapor phase VOCs under dry conditions was evaluated by using two metal oxides, $TiO_2$ powder and $Al_2O_3$ powder. BET analysis and ammonia in-situ FT-IR analysis were used to analyze specific surface area and surface acid site. As a result, $TiO_2$ powder and $Al_2O_3$ powder had a specific surface area of $317.6m^2\;g^{-1}$ and $64m^2\;g^{-1}$, respectively. In the case of $TiO_2$ powder, many acid sites were observed on the surface. As a result of evaluating the vapor phase VOCs adsorption performance using two metal oxide powders, $TiO_2$ powder having a relatively large specific surface area and a large number of acid sites exhibited relatively good adsorption performance. In particular, it is considered that the specific surface area directly affects the adsorption performance, and further study on the effect of the acid site is required. Based on the $TiO_2$ exhibited excellent adsorption performance, it manufactured into various forms of honeycomb, hollow fiber and disc. As a result, the adsorption performance was lower than that of the powder, but it is advantageous in view of applicability. In addition, it was confirmed that the disc adsorbent having excellent thermal durability due to the characteristics of the manufacturing process stably maintains adsorption performance even at a high temperature desorption process several times.

Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel

  • Jeong, Jong-Woo;Park, Jong-Hui;Choi, Sung-Woo;Lee, Kyung-Hee;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2288-2292
    • /
    • 2007
  • The catalytic activities of nickel-based catalysts were estimated for oxidizing acetaldehyde of VOCs exhausted from industrial facilities. The catalysts were prepared by sol-gel methods of SiO2 and SiO2-TiO2 as a xerogel followed by impregnating Al2O3 powder with the nickel nitrate precursor. The crystalline structure and catalytic properties for the catalysts were investigated by use of BET surface area, X-ray diffraction (XRD), Xray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) techniques. These results show that nickel oxide is transformed to NiAl2O4 spinel structure at the calcination temperature of 400 °C in response to the steps with after- and co-impregnation of Al2O3 powder in sol-gel process. The NiAl2O4 could suppress the oxidation reaction of acetaldehyde by catalysts. The NiO is better dispersed on SiO2-TiO2/Al2O3 support than SiO2/Al2O3 and SiO2-TiO2-Al2O3 supports. From the testing results of catalytic activities for oxidation of acetaldehyde, Catalysts showed a big difference in conversion efficiencies with the way of the preparation of catalysts and the loading weight of nickel. The catalyst of 8 wt.% Ni/TiO2-SiO2/Al2O3 showed the best conversion efficiency on acetaldehyde oxidation with 100% conversion efficiency at 350 °C.

A Study on the Preparation of $Al_2O_3-TiO_2$ Nanocomposite Powders ($Al_2O_3-TiO_2$계 Nanocomposite 분체의 합성에 관한 연구)

  • 이홍림;이호순
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.115-122
    • /
    • 1993
  • Transparent Al2O3 and TiO2 clear sols prepared by hydrolysis and subsequent peptization were mixed into wet gel. EDS analysis for this gel showed that wet gel was extremely homogeneous in chemical composition. Calcination of the wet gel at 120$0^{\circ}C$ for 50 minutes resulted in Al2O3-TiO2 nanocomposite powders where TiO2 particles of 101~102 nanometer were dispersed in the Al2O3 matrix. Both powders were sintered for 4 hours in the temperature range over 1500~1$650^{\circ}C$ with and without 5wt% MgO sintering aid. Among these sintered bodies, nanocomposite powder compacts sintered at 1$650^{\circ}C$ for 4 hours with 5wt% MgO showed the most dense structure with the grain size under 5${\mu}{\textrm}{m}$ and highest relative density of 98.2%.

  • PDF

The Effect of $Y_2O_3$ Dispersoids on the High Temperature Oxidation of Ti-34wt%Al-1.5wt%Mn Alloys (Ti-34wt%Al-1.5wt%Mn 합금의 고온산화에 미치는 $Y_2O_3$ 분산입자 첨가효과)

  • Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.288-294
    • /
    • 2006
  • Alloys of TiAl-Mn-(0, 5, 10)wt.% $Y_2O_3$ were prepared by a powder metallurgical route, and their oxidation behavior was studied at 800, 900 and $1000^{\circ}C$ in 1 atm of air. The scale formed on the alloys consisted of $TiO_2$ and $Al_2O_3$ oxides. During oxidation, Mn tended to diffuse outward, whereas oxygen diffused inward. The dispersoids of $T_2O_3$, which segregated at the matrix grain boundaries, acted as a diffusion channel for cations and oxygen ions, nucleation sites for oxides, and vacancy annihilation sites. $T_2O_3$ increased the scale thickness, but improved the scale adherence.

Synthesis of $Fe/Al_2O_3$ and $Fe/TiO_2$ nanocomposite powder by mechanical alloying (기계적합금화에 의한 $Fe/Al_2O_3$$Fe/TiO_2$계 나노복합분말의 제조)

  • Lee, Seong-Hee;Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.202-207
    • /
    • 2009
  • Nanocomposite formation of metal-metal oxide systems by mechanical alloying (MA) has been investigated at room temperature. The systems we chose are the $Fe_3O_4$-M (M = AI, Ti), where pure metals are used as reducing agent. It is found that $Fe/Al_2O_3$ and $Fe/TiO_2$ nanocomposite powders in which $Al_2O_3$ and $TiO_2$ are dispersed in ${\alpha}$-Fe matrix with nano-sized grains are obtained by MA of $Fe_3O_4$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the shorter MA time for the nanocomposite formation in $Fe/Al_2O_3$ is due to a large negative heat associated with the chemical reduction of magnetite by aluminum. X-ray diffraction results show that the average grain size of ${\alpha}$-Fe in $Fe/TiO_2$ nanocomposite powders is in the range of 30 nm. The change in magnetic properties also reflects the details of the solid-state reduction of magnetite by pure metals during MA.

Formation of Rod-like $Al_2TiO_5$ via Mechanical Activation Followed by Thermal Processing

  • Chen, Xiaohu;Chen, Xiaomin;Zhao, Huang;Wud, Jihuai
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.163-164
    • /
    • 2006
  • A QM-ISP-4 Planetary Mill was employed to activate mechanically the mixtures of anatase and corundum at room temperature for different times. The milled powder mixtures were then sintered at $1300^{\circ}C$ for 1 h. The XRD results showed that the milled powder mixtures were completely transformed into $Al_2TiO_5$ after sintering, except the mixtures milled for 5 and 10 hours. The SEM observations showed the typical morphology of rod-like $Al_2TiO_5$ vary in the range: widths from 0.6 to $1.2\;{\mu}m$, and lengths from 3.0 to $6.0\;{\mu}m$. The rod-like $Al_2TiO_5$ formation was attributed to the positive effects caused by the mechanical activation.

  • PDF

Oxidation Resistance and Electrical Conductivity of $Ti_3SiC_2$ with Thin Oxide Layer

  • Hwang, Sung-Ik;Han, Kyoung-Ran;Kim, Chang-Sam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1110-1111
    • /
    • 2006
  • [ $Ti_3SiC_2$ ] was coated with $Al_2O_3$, MgO and $SiO_2$ respectively by sol-gel method and cured at 900 and $1200^{\circ}C$. The coated oxides did not react with $Ti_3SiC_2$ at $900^{\circ}C$ but reacted with it to form $TiC_x$ at $1200^{\circ}C$. The specimen coated with $SiO_2$ at $900^{\circ}C$ formed a dense protecting layer and showed the best oxidation resistance at $800^{\circ}C$ in air. However, the dense protecting layers did not form in $Al_2O_3$ and MgO coated specimens cured even at $900^{\circ}C$. MgO coated specimen showed the worst improvement in the oxidation resistance because the reactivity of MgO with $Ti_3SiC_2$ was highest. On the other hand, the electrical conductivities were measured in MgO and $Al_2O_3$ coated specimens to have TiCx but could not be measured in the $SiO_2$ coated ones because of the nonconductive dense protected layers.

  • PDF

Sintering and Machanical Properties of Y2O3 Added Al2O3-TiC Composite (Y2O3가 첨가된 Al2O3-TiC복합 소결체의 치밀화와 기계적 성질)

  • 최종선;박상엽;김득중;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.438-444
    • /
    • 1989
  • The role of TiC and the effect of Y2O3 addition on the densification, microstructure and mechanical properties of Al2O3-TiC composite have been studied. The amount of Y2O3 has been varied from 0 to 2 wt.% while keeping the TiC content at 10, 20 or 30 wt.%. The powder compacts have been sintered at 1,75$0^{\circ}C$ for various times in 1 atm Ar atmosphere and hot isostatically pressed (HIPed) at 1,$600^{\circ}C$ for 0.5h under 1,500atm Ar. Considerable increase in sintered density(over 95%) has been achieved by adding 0.5 wt.% Y2O3 in specimens containing high TiC volume. More addition of Y2O3 does not affect the densification. With increasing the sintering time from 0.5 to 4h, slight increase in density results. The growth of Al2O3 grain has been enhanced by Y2O3 addition ; this tendency is reduced with increasing TiC content because of grain boundary dragging effect of TiC particles. The hardness of specimens increases considerably by an addition of 0.5wt.% Y2O3 owing to the density increase. Further addition of Y2O3 has no effect on hardness. Fracture toughness augments with TiC content by crack deflection around the particles. By adding 0.5wt.% Y2O3, all the specimens can be densified to isolated pore stage and thus can be HIPed to full densification and better mechanical property. In particular, the fracture toughness of Al2O3-30 TiC specimen increases about 50% by HIPing. Fully dense Al2O3-30 TiC with good mechanical properties can be prepared by normal Sintering/HIPing process.

  • PDF

A Study on the Fabrication of Reinforced Reaction Bonded Alumina Ceramics (반응결합 강화 알루미나세라믹스의 제조에 관한 연구)

  • 김일수;강민수;박정현
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.311-318
    • /
    • 1998
  • The reaction bonded alumina ceramics with reinforced particles which have low shrinkage were pro-duced by blending of SiC or TiC or ZrO2 powders to the mixture of Al metal and Al2O3 powder. The powd-ers were attrition milled isostantically pressed and preheated tio 110$0^{\circ}C$ with a heating rate of $1.5^{\circ}C$/min The specimens were then sintered at the temperature range 1500 to 1$600^{\circ}C$ for 5 hours with a heating rate of 5$^{\circ}C$/min. The specimens showed 5-9% weight gain and 2-9% dimensional expansion through the complete oxidation of Al after preheating up to 11--$^{\circ}C$ the overall dimensional change of the specimens after the reaction sintering at 1500-1$600^{\circ}C$ was 6-12% The maximum densities were 92% theoretical. The fine grain-ed(average grain size :0.4 ${\mu}{\textrm}{m}$) microstructure were observed in the specimen with ZrO2 and SiC. But the microstructure of specimen with TiC was relatively coarse.(average grain size : 2.1 ${\mu}{\textrm}{m}$) The mullite phase was formed by the reaction of Al2O3 and SiO2 in a specimen with SiC. In the TiC contained specimen TiC was oxidized into TiO2 and finally reacted with Al2O3 to form Al2TiO5 during sintering.

  • PDF