• 제목/요약/키워드: Thyristor Controlled Series Capacitor(TCSC)

검색결과 26건 처리시간 0.02초

다기 전력 시스템 동적 안정도 향상을 위한 분산 제어 기반 PSS 및 TCSC 제어기 설계 (The Analysis of Vibration Due to Magnetic Exciting Force in the Brushless DC Motor)

  • 이승철;서장철;문승일;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권1호
    • /
    • pp.13-19
    • /
    • 2001
  • This paper deals with decentralized control scheme and its application to multi-machine power systems. Decentralized control scheme has several practical advantages, because power system has geographically distributed characteristics. In this paper, decentralized observer-based optimal Power System Stabilizer(PSS) and Thyristor-Controlled Series Capacitor(TCST) controller are designed and tested in WSCC 9 bus system with one TCSC installed. Simulation results show that the proposed decentralized controller has satisfactory performances comparable to the centralized controller. In addition, using modal analysis, this paper shows that the proposed decentralized controller significantly affects only one pair of eigenvalues which have high participation with each generator, while slightly affects other eigenvalues. This result indicates that the application of the decentralized control scheme to enhance power system dynamic stability via excitation control have potential advantages because each low-damped mode occurs dominantly by each decentralized subsystem.

  • PDF

TCSC 투입계통의 송전용량 증대에 대한 연구 (The Effect of Thyristor Controlled Series Capacitor(TCSC) on Power Transfer Capability)

  • 이주호;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.890-892
    • /
    • 1998
  • TCSC is a FACTS device that can control the active power flow and current of transmission lines by adjusting line impedances. In this paper, we study the effect of TCSC on power transfer capability. A static model of TCSC is implemented in the continuation power-flow(CPF) Program and the power transfer capability is measured using the CPF. The site of TCSC is selected to increase power transfer capability by the sensitivity information provided from the CPF. The effect of TCSC with various control mode is tested in IEEE New England 30-bus system.

  • PDF

이산 전력시스템에서 TCSC의 주기적 스위칭 동작에 의한 진동모드의 감도해석 (Sensitivity Analysis of Oscillation Modes Occurred by Periodic Switching Operations of TCSC in Discrete Power Systems)

  • 김덕영
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.162-168
    • /
    • 2008
  • 본 논문에서는 RCF 해석법을 싸이리스터 제어 FACTS 설비인 TCSC를 포함하는 전력계통의 미소신호안정도 해석에 적용하였다. 이산시스템에서 RCF 해석법에 기초한 고유치 감도해석 알고리즘을 제시하고 TCSC를 포함하는 전력계통에 적용하였다. 사례연구를 통해서 RCF 해석법이 TCSC의 주기적 스위칭 동작에 의해 발생하는 진동모드의 변화와 새로이 발생되는 불안정 진동모드의 정확한 해석에 매우 유용한 해석방법임을 보였다. 또한 RCF 해석법에 기초한 고유치 감도해석 방법을 사용하여 이산시스템에서 주기적 스위칭 동작에 의해 발생되는 중요 진동모드에 대한 제어기 감도계수를 정확히 구할 수 있음을 보였다. 이러한 사례연구 결과는 기존의 연속시스템에서의 상태방정식에 의한 해석결과와 크게 다른 것이며, RCF 해석법이 TCSC와 같이 주기적 스위칭 동작을 하는 설비를 포함하는 이산전력계통의 해석에 매우 유용한 방법임을 보여준다.

전력계통의 안정도 향상을 위한 유전알고리즘을 이용한 TCSC 안정화장치 설계 (Design of TCSC-PSS using Genetic Algorithm for Enhancement of Power System Stability)

  • 정문규;정형환;허동렬;주석민;정동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.227-229
    • /
    • 2003
  • In this paper, we design a Power System Stabilizer for a Thyristor Controlled Series Capacitor(TCSC-PSS) for enhancement of power system stability. Here, PSS parameters are optimized using Genetic Algorithm(GA) in order to maintain optimal operation of TCSC. Simulation results show that the proposed control technique is superior to a conventional PSS in dynamic responses over the wide range of operating conditions and is convinced robustness and reliableness in view of structure.

  • PDF

순차 프리에 변환(DFT)를 이용한 전압비교형 TCSC TCSC(Thyristor Control led Series Compensation) (Voltage Comparison-type TCSC Using Recursive Discrete Fouier Transform)

  • 고성규;박상영;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.79-81
    • /
    • 1993
  • We have proposed a new technology compensating reactance component of line and load. Because capacity of SC is static, it is not appropriate to varing reactance and causes SSR problems. TCSC is introduced for the flecxible control of reactance of SC. If SC voltage is varied when the capacitor current is constant, it can be considered that capacity of SC was varied. SO capacity of SC can be controlled by controlling the voltage of SC. Control reference voltage of SC can be obtained from the condition that sum of reactive powers in all parts is zero.

  • PDF

전력계통의 안정도 향상을 위한 TCSC의 GA-퍼지 제어기 설계 (Design of GA-Fuzzy Controller of TCSC for Enhancement of Power System Stability)

  • 정문규;정형환;안병철;왕용필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.225-235
    • /
    • 2005
  • In this Paper, it was designed the GA-fuzzy controller of a Thyristor Controlled Series Capacitor(TCSC) for enhancement of power system stability. The newly designed controller of TCSC was designed to overcome the nonlinearity such as operating point change of power system as well as to respond to disturbances as uncertainties of line parameters and line fault. So, fuzzy controller by intelligent control theory was used for it. And the fuzzy controller was optimized from a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller namely. scaling factor. membership function and control rules. Nonlinear simulation results show that the proposed control technique is superior to conventional PSS in dynamic responses over the wide range of operating conditions and is convinced robustness and reliableness in view of structure.

전력계통 동요억제를 위한 FACTS 제어기 설계 (Design of FACTS Controller for Oscillation Damping of Power System)

  • 정문규;왕용필;정형환;이정필;허동렬;정동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.196-198
    • /
    • 2005
  • In this paper, we design the Thyristor Controlled Series Capacitor(TCSC) supplementary controller for oscillation damping of power system. Here the supplementary controller is designed as a fuzzy logic-based precompensation approach for TCSC. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing TCSC. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional method in dynamic responses over the wide range of operating conditions and is convinced robustness and reliableness in view of structure.

  • PDF

GA를 이용한 TCSG 제어기의 파라메터 선정 (GA Based Control Parameter Selection Method for Optimal TCSC Control)

  • 김학만;오태규;신명철;손광명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.841-843
    • /
    • 1997
  • In this paper we present a Genetic approach to select weighting matrices of LQ(Linear Quadratic) controller for optimal TCSC(Thyristor Controlled Series Capacitor) control. A design of LQ controller depends on choosing weighting matrices. The selection of weighting matrices is usually carried out by trial and error, which is not a trivial problem. We proposed a efficient method using GA of finding weighting matrices for optimal control law. The proposed GA method was applied to design LQ controller of TCSC in one machine infinite bus system and showed good results.

  • PDF

Coordinated Control of TCSC and SVC for System Damping Enhancement

  • So Ping Lam;Chu Yun Chung;Yu Tao
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.322-333
    • /
    • 2005
  • This paper proposes a combination of the Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) installation for enhancing the damping performance of a power system. The developed scheme employs a damping controller which coordinates measurement signals with control signals to control the TCSC and SVC. The coordinated control method is based on the application of projective controls. Controller performance over a range of operating conditions is investigated through simulation studies on a single-machine infinite-bus power system. The linear analysis and nonlinear simulation results show that the proposed controller can significantly improve the damping performance of the power system and hence, increase its power transfer capabilities. In this paper, a current injection model of TCSC is developed and incorporated in the transmission system model. By using equivalent injected currents at terminal buses to simulate a TCSC no modification of the bus admittance matrix is required at each iteration.

The Design and Implementation of a Control System for TCSC in the KERI Analog Power Simulator

  • Jeon, Jin-Hong;Kim, Kwang-Su;Kim, Ji-Won;Oh, Tae-Kyoo
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.129-133
    • /
    • 2004
  • This paper deals with the design and implementation of a TCSC (Thyristor Controlled Series Capacitor) simulator, which is a module for an analog type power system simulator. Principally, it presents configuration of controller hardware/software and its experimental results. An analog type power system simulator consists of numerous power system components, such as various types of generator models, scale-downed transmission line modules, transformer models, switches and FACTS (Flexible AC Transmission System) devices. It has been utilized for the verification of the control algorithm and the study of system characteristics analysis. This TCSC simulator is designed for 50% line compensation rate and considered for damping resister characteristic analysis. Its power rate is three phase 380V 20kVA. For hardware extendibility, its controller is designed with VMEBUS and its main CPU is TMS320C32 DSP (Digital Signal Processor). For real time control and communications, its controller is applied to the RTOS (Real Time Operation System) for multi-tasking. This RTOS is uC/OS-II. The experimental results of capacitive mode and inductive mode operations verify the fundamental operations of the TCSC.