• 제목/요약/키워드: Thymidine monophosphate

검색결과 6건 처리시간 0.025초

Prodrug로서 지질친화성 Nucleoside 5′-(3-pyridinyl carbonyl) monophosphate 유도체의 항암 활성 (Antitumor Activities of Lipophilic Nucleoside 5′-monophosphate Analogues as Prodrugs)

  • Lee, Bong-Hun;Park, Jang-Su;Kang, Shin-Won
    • 생명과학회지
    • /
    • 제9권1호
    • /
    • pp.58-62
    • /
    • 1999
  • 몇가지 nucleoside 5'-monophosphate 유도체들과 지질 친화성을 증가시킨 nucleoside 5'-(3-pyridinyl carbonyl)monophosphate 유도체들을 합성한 후 Mouse leukemia P388, Murine mammary carcinoma FM3A, Human histiocytic lymphoma U937 세포들에 대해 시험관내에서 항암활성을 MTT를 이용한 방법으로 나타내었다. 그 결과 uridine 5'-(3-pyridinylcarbonyl) monophosphate(7)와 2',3'-didehydro-3'-deoxythymidine-5' -(3-pyridinylcarbonyl) monophoshate(8)의 inhibition이 uridine 5'-monophosphate(1)와 2',3'-didehydro-3'-deoxythymidine-5'-monophosphate(4) 보다 각각 증가하였다. 이는 nucleoside 5'-(3-pyridinylcarbonyl) monophosphate 유도체들이 임상적 한계를 극복할 수 있는 가능성을 보인 것이다.

  • PDF

핵의학적 세포증식 영상 (Nuclear Imaging of Cellular Proliferation)

  • 여정석
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.198-204
    • /
    • 2004
  • Tumor cell proliferation is considered to be a useful prognostic indicator of tumor aggressiveness and tumor response to therapy but in vitro measurement of individual proliferation is complex and tedious work. PET imaging provides a noninvasive approach to measure tumor growth rate in situ. Early approaches have used $^{18}F$-FDG or methionine to monitor proliferation status. These 2 tracers detect changes in glucose and amino acid metabolism, respectively, and therefore provide only an indirect measure of proliferation status. More recent studies have focused on DNA synthesis itself as a marker of cell proliferation. Cell lines and tissues with a high proliferation rate require high rates of DNA synthesis. $[^{11}C]Thymidine$ was the first radiotracer for noninvasive imaging of tumor proliferation. The short half-life of $^{11}C$ and rapid metabolism of $[^{11}C]Thymidine$ in vivo make the radiotracer less suitable for routing use. Halogenated thymidine analogs such as 5-iodo-2-deoxyuridine (IUdR) can be successfully used as cell proliferation markers for in vitro studies because these compounds are rapidly incorporated into newly synthesized DNA. IUdR has been evaluated as a potential in vivo tracer in nuclear medicing but the image qualify and the calculation of proliferation rates are impaired by its rapid in vivo degradation. Hence, the thymidine analog $3'-deoxy-3'-^{18}F-fluorothymidine$ (FLT) was recently introduced as a stable proliferation marker with a suitable nuclide half-life and stable in vivo. $[^{18}F]FLT$ is phosphorylated to 3-fluorothymidine monophosphate by thymidine kinase 1 and reflects thymidine kinase 1 activity in proliferating cell. $[^{18}F]FLT$ PET is feasible in clincal use and well correlates with cellular proliferation. Choline is a precursor for the biosynthesis of phospholipids (in particular, phosphatidylcholine), which is the essential component of all eukaryotic cell membranes and $[^{11}C]choline$, which is a new marker for cellular proliferation.

One-pot Enzymatic Synthesis of UDP-D-glucose from UMP and Glucose-1-phosphate Using an ATP Regeneration System

  • Lee, Hei-Chan;Lee, Seung-Don;Sohng, Jae-Kyung;Liou, Kwang-Kyoung
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.503-506
    • /
    • 2004
  • Glucose-1-phosphate uridylyltransferase from E. coli K12 was used to convert uridine-5'-triphosphate and glucose-1-phosphate to UDP-D-glucose. The conversion was efficient and completed within 5 minutes under the employed conditions. In addition, thymidine-5'-monophosphate kinase and acetate kinase were proven to be non-specific, converting udridine-5'-monophosphate to uridine-5'-triphosphate with 55% conversion after 6 h, which was much slower than the production of TTP under the same conditions (complete conversion within one hour). Since these two reactions could proceed under the same conditions, a one-pot synthesis of UDP-D-glucose with ATP regeneration was designed from easily available starting materials, and conversion up to 40% by HPLC peak integration was achieved given a reaction time of 4 h.

Biosynthesis of Carbohydrate associated with secondary Metabolites; Biosynthesis of dTDP-4-keto-6-deoxy-D-glucose by four enzyme reaction system

  • 오종민;이선구;김병기
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.185-188
    • /
    • 2001
  • We have developed a synthetic method for dTDP-4-keto-6-deoxy-D-glucose with four enzyme system. We have used crude extracts from cultures of Escherichia coli BL21 strains harboring plasmids containing different sources. dTDP-4-keto-6-deoxy-D-glucose was synthesized by the combination of thymidine-monophosphate kinase, acetate kinase, dTDP-glucose synthase and dTDP-D-glucose 4,6-dehydratase in a batch system, starting the reaction with dTMP. The enzymatic synthesis strategy allowed a dTMP conversion with a 95%.

  • PDF

유선발달에 있어서 cAMP, EGF, IGF-I 및 단백질 인산화 작용의 역할 I. EGF, IGF-I 및 Photoreactive Cyclic AMP가 유선상피세포의 DNA합성에 미치는 효과 (Role of cAMP, EGF, IGF-I and Protein Phosphorylation in Mammary Development I. Effect of EGF, IGF-I and Photoreactive Cyclic AMP on DNA Synthesis of Mammary Epithelial Cell)

  • 여인서;박춘근;홍병주
    • 한국가축번식학회지
    • /
    • 제17권1호
    • /
    • pp.49-56
    • /
    • 1993
  • Mouse mammary epithelial cells(NMuMG) were plated onto 24 well phates(100,000 cells/well), in DMEM supplemented with 10% fetal calf serum. After serum starvation for 24 hours, EGF)0~100ng/ml) was added simultaneously with IGF-I(10ng/ml), 1$\mu$M photoreactive cAMP(4,5-dimethoxy-2-nitrobenzyl adenosine-3',5' cyclic monophosphate, DMNB) or IGF-I plus DMNB. After 2 hours, the cells were expposed to UV light(300nm, 3 second pulse0 in order to activate DMNB which induces a rapid transient increase in intracellular cAMP upon UV irradiation. DNA synthesis was estimated as incorporation of 3H-thymidine into DNA(1 hour pulse with 1$\mu$Ci/ml, 18~19 hours after UV exposure). Without IGF-I or DMNB, EGF(10 or 100ng/ml) increased DNA synthesis from 8,362 dpm/well in control to 16,345 or 18,684 dpm/well with EGF(pooled SE=1,239 dpm/well, P<0.05). IGF-I or IGF-I plus DMNB alone increased DNA synthesis from 8,362 dpm/well in control to 17,307 or 20,427 dpm/well, respectively(P<0.05). Addition of IGF-I, DMNB or IGF-I plus DMNB into 0~100ng/ml EGF did not significantly change the shape of dose response curve of EGF alone. In other experiment, EGF or IGF-I plus DMNB into 10ng/ml EGF group exhibited interaction effect in DNAsynthesis [EGF(10ng/ml)=18,497; IGF-I+EGF=22,837; DMNB+EGF=20,658 ; IGF-I+DMNB+EGF=29,658, pooled SE=1,055, P<0.05]. These results indicate that simultaneous activation of EGF, IGF-I and intracellular cAMP interact in DNA synthesis of mouse mammary epithelial cells.

  • PDF