References
-
Audrey, C. W., Quingyen, L., Marilynn, K. R. and Eugene, P. K. (1994) UTP:
$\alpha$ -D-glucose-1-phosphate uridylyltransferase of Escherichia coli: Isolation and DNA sequence of the GalU gene and purification of the enzyme. J. Bacteriol. 176, 2611-2618. - Jeong, E. and Han, O. (2001) Purification and characterization of Bacillus subtilis proptoporphyrinogen oxidase and preequilibrium behavior during oxidation of protoporphyrinogen IX. J. Biochem. Mol. Biol. 34, 39-42.
- Kim, S. -K., Park, P. -J., Kim, J. -B. and Shahidi, P. (2002) Purification and characterization of a collagenolytic protease from the filefish. Novoden modestrus, J. Biochem. Mol. Biol. 35, 165-171. https://doi.org/10.5483/BMBRep.2002.35.2.165
- Magee, C., Nurminskaya, M. and Linsenmayer, T. F. (2001) UDP-glucose pyrophosphorylase: up-regulation in hypertrophic cartilage and role in hyaluronan synthesis. Biochem. J. 360, 667-674. https://doi.org/10.1042/0264-6021:3600667
- Oh, J., Kim, B. -G., Sohng, J. K., Liou, K. and Lee, H. C. (2003) One-pot enzymatic production of dTDP-4-keto-6-D-glucose from dTMP and glucose-1-phosphate. Biotech. Bioeng. 84, 452-458. https://doi.org/10.1002/bit.10789
- Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Habor Laboratory Press, New York, USA
- Yamshita, Y., Tsukioka, Y., Nakano, Y., Tomihisa, K., Oho, T. and Koga, T. (1998) Biological functions of UDP-glucose synthesis in Streptococcus mutans, Microbiology 144, 1235-1245. https://doi.org/10.1099/00221287-144-5-1235
Cited by
- Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set vol.105, pp.24, 2008, https://doi.org/10.1073/pnas.0803164105
- Recent Progress in Enzymatic Synthesis of Sugar Nucleotides vol.31, pp.7, 2012, https://doi.org/10.1080/07328303.2012.687059
- In vitro single-vessel enzymatic synthesis of novel Resvera-A glucosides vol.424, 2016, https://doi.org/10.1016/j.carres.2016.02.001
- Enhanced adenosine triphosphate production by Saccharomyces cerevisiae using an efficient energy regeneration system vol.28, pp.1, 2011, https://doi.org/10.1007/s11814-010-0331-3
- Enhanced Production of Nargenicin A1 and Generation of Novel Glycosylated Derivatives vol.175, pp.6, 2015, https://doi.org/10.1007/s12010-014-1472-3
- Production of uridine 5′-monophosphate by Corynebacterium ammoniagenes ATCC 6872 using a statistically improved biocatalytic process vol.76, pp.2, 2007, https://doi.org/10.1007/s00253-007-1013-x
- Enhancing the production of uridine 5′-monophosphate by recombinant Saccharomyces cerevisiae using a whole cell biocatalytic process vol.27, pp.9, 2011, https://doi.org/10.1007/s11274-011-0662-1
- Flavonoid Glycosylation Using Microbial-produced Unusual Sugar vol.26, pp.2, 2011, https://doi.org/10.7841/ksbbj.2011.26.2.093
- Synthetic analog of anticancer drug daunorubicin from daunorubicinone using one-pot enzymatic UDP-recycling glycosylation vol.124, 2016, https://doi.org/10.1016/j.molcatb.2015.11.020
- Enzymatic synthesis of dTDP-4-amino-4,6-dideoxy-d-glucose using GerB (dTDP-4-keto-6-deoxy-d-glucose aminotransferase) vol.342, pp.11, 2007, https://doi.org/10.1016/j.carres.2007.04.007
- Efficient enzymatic systems for synthesis of novel α-mangostin glycosides exhibiting antibacterial activity against Gram-positive bacteria vol.98, pp.20, 2014, https://doi.org/10.1007/s00253-014-5947-5
- Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for d-amino acid dipeptide synthesis vol.103, pp.2, 2007, https://doi.org/10.1263/jbb.103.179