• Title/Summary/Keyword: Thunderstorm Gust

Search Result 13, Processing Time 0.046 seconds

A Study on the Gust with Thunderstorm in Honam Area (호남지역에서 뇌우에 의한 돌풍사례 분석)

  • Cho, Eun-Hee
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.101-130
    • /
    • 2009
  • In recent years, South Korea has often witnessed damages by gusts caused by thunderstorms in summer. The Korea Meteorological Administration defines that a gust happens when the maximum instantaneous wind velocity is 10m/s or more and draws up hourly observation reports. When a cumulonimbus develops due to an ascending current and reaches the height of 12~16 km, the temperature of the cloud top drops and a lightening happens, which causes a gust accompanied by a thunderstorm and further regional meteorological damage. It's difficult to predict a regional gust with the mesoscale prediction model at the administration. Thus this study set out to analyze the damage cases by a gust accompanied by a thunderstorm and to make a contribution to the prediction and understanding of a gust by a thunderstorm. A gust by a thunderstorm happens where potential equivalent temperature converges or is higher than the surrounding areas. The convergence area of potential equivalent temperature matches the track of thunderstorm cells. The Kimje gust took place where high potential equivalent temperature converged, and the Jangsu gust did as the area of high potential equivalent temperature approached. There should be a good amount of vapor supply with the moisture flux converging at the bottom layer in order to bring instability. In addition, it should collide into a dry and cold atmosphere at 700 hPa. The moving track at the center of the low dew point spread corresponds to that of a gust.

  • PDF

Spatial and Temporal Analysis of Thunderstorm Wind Gust (뇌우 동반 돌풍의 시공간분포 분석)

  • Lee, Sung Su;Kim, Jun Yeong
    • Spatial Information Research
    • /
    • v.21 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • This study presents the analysis of temporal and spatial distribution of occurrences of wind gust over Korea from 2002 to 2009. The events during typhoons are excluded and the topographical effects on the wind speed are also corrected using KBC (2005). As the results, the frequency of the occurrences is as high as 286 and the higher occurrences appear mainly along the coastal area. This study also shows that the uncertainty of the appearance of wind gust during thunderstorm is much higher than in synoptic wind by comparing wind speed records for both events. This study also found that the spatial distribution of cumulative cloud quotient is closely correlated to that of occurrences of thunderstorm wind gust, which suggests the possible utilization of the cloud quotient as weighting factors in assessing wind gust risk.

Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations

  • Aboshosha, Haitham;Mara, Thomas G.;Izukawa, Nicole
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.85-102
    • /
    • 2020
  • Accurate load evaluation is essential in any performance-based design. Design wind speeds and associated wind loads are well defined for synoptic boundary layer winds but not for thunderstorms. The method presented in the current study represents a new approach to obtain design wind speeds associated with thunderstorms and their gust fronts using historical data and Monte Carlo simulations. The method consists of the following steps (i) developing a numerical model for thunderstorm downdrafts (i.e. downbursts) to account for storm translation and outflow dissipation, (ii) utilizing the model to characterize previous events and (iii) extrapolating the limited wind speed data to cover life-span of structures. The numerical model relies on a previously generated CFD wind field, which is validated using six documented thunderstorm events. The model suggests that 10 parameters are required to describe the characteristics of an event. The model is then utilized to analyze wind records obtained at Lubbock Preston Smith International Airport (KLBB) meteorological station to identify the thunderstorm parameters for this location, obtain their probability distributions, and utilized in the Monte Carlo simulation of thunderstorm gust front events for many thousands of years for the purpose of estimating design wind speeds. The analysis suggests a potential underestimation of design wind speeds when neglecting thunderstorm gust fronts, which is common practice in analyzing historical wind records. When compared to the design wind speed for a 700-year MRI in ASCE 7-10 and ASCE 7-16, the estimated wind speeds from the simulation were 10% and 11.5% higher, respectively.

Wind pressure measurements on a cube subjected to pulsed impinging jet flow

  • Mason, M.S.;James, D.L.;Letchford, C.W.
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.77-88
    • /
    • 2009
  • A pulsed impinging jet is used to simulate the gust front of a thunderstorm downburst. This work concentrates on investigating the peak transient loading conditions on a 30 mm cubic model submerged in the simulated downburst flow. The outflow induced pressures are recorded and compared to those from boundary layer and steady wall jet flow. Given that peak winds associated with downburst events are often located in the transient frontal region, the importance of using a non-stationary modelling technique for assessing peak downburst wind loads is highlighted with comparisons.

Surface measurements of the 5 June 2013 damaging thunderstorm wind event near Pep, Texas

  • Gunter, W. Scott;Schroeder, John L.;Weiss, Christopher C.;Bruning, Eric C.
    • Wind and Structures
    • /
    • v.24 no.2
    • /
    • pp.185-204
    • /
    • 2017
  • High-resolution wind measurements at 2.25 m in height were used to investigate the mean and turbulence properties of an extreme thunderstorm wind event in West Texas. These data were combined with single Doppler scans from the Texas Tech University Ka-band mobile Doppler radars systems (TTUKa) to provide meteorological context over the surface measurement stations for portions of the outflow. Several features characteristic of a severe wind event were noted in the radar data, including a bowing portion of the thunderstorm complex and a small circulation on the leading edge. These features were reflected in the surface wind time histories and provided natural separation between various regions of the outflow. These features also contributed to the peak 1-s gust at all measurement stations. The turbulence characteristics of each outflow region were also investigated and compared. Reduced values of running turbulence intensity and elevated values of longitudinal integral scales were noted during the period of peak wind speed. Larger scales of turbulence within the outflow were also suggested via spectral analysis.

Strong wind climatic zones in South Africa

  • Kruger, A.C.;Goliger, A.M.;Retief, J.V.;Sekele, S.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.37-55
    • /
    • 2010
  • In this paper South Africa is divided into strong wind climate zones, which indicate the main sources of annual maximum wind gusts. By the analysis of wind gust data of 94 weather stations, which had continuous climate time series of 10 years or longer, six sources, or strong-wind producing mechanisms, could be identified and zoned accordingly. The two primary causes of strong wind gusts are thunderstorm activity and extratropical low pressure systems, which are associated with the passage of cold fronts over the southern African subcontinent. Over the eastern and central interior of South Africa annual maximum wind gusts are usually caused by thunderstorm gust fronts during summer, while in the western and southern interior extratropical cyclones play the most dominant role. Along the coast and adjacent interior annual extreme gusts are usually caused by extratropical cyclones. Four secondary sources of strong winds are the ridging of the quasi-stationary Atlantic and Indian Ocean high pressure systems over the subcontinent, surface troughs to the west in the interior with strong ridging from the east, convergence from the interior towards isolated low pressure systems or deep coastal low pressure systems, and deep surface troughs on the West Coast.

Characteristics of thunderstorms relevant to the wind loading of structures

  • Solari, Giovanni;Burlando, Massimiliano;De Gaetano, Patrizia;Repetto, Maria Pia
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.763-791
    • /
    • 2015
  • "Wind and Ports" is a European project that has been carried out since 2009 to handle wind forecast in port areas through an integrated system made up of an extensive in-situ wind monitoring network, the numerical simulation of wind fields, the statistical analysis of wind climate, and algorithms for medium-term (1-3 days) and short term (0.5-2 hours) wind forecasting. The in-situ wind monitoring network, currently made up of 22 ultrasonic anemometers, provides a unique opportunity for detecting high resolution thunderstorm records and studying their dominant characteristics relevant to wind engineering with special concern for wind actions on structures. In such a framework, the wind velocity of thunderstorms is firstly decomposed into the sum of a slowly-varying mean part plus a residual fluctuation dealt with as a non-stationary random process. The fluctuation, in turn, is expressed as the product of its slowly-varying standard deviation by a reduced turbulence component dealt with as a rapidly-varying stationary Gaussian random process with zero mean and unit standard deviation. The extraction of the mean part of the wind velocity is carried out through a moving average filter, and the effect of the moving average period on the statistical properties of the decomposed signals is evaluated. Among other aspects, special attention is given to the thunderstorm duration, the turbulence intensity, the power spectral density and the integral length scale. Some noteworthy wind velocity ratios that play a crucial role in the thunderstorm loading and response of structures are also analyzed.

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

Emerging issues and new frameworks for wind loading on structures in mixed climates

  • Solari, Giovanni
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • Starting from an overview on the research on thunderstorms in the last forty years, this paper provides a general discussion on some emerging issues and new frameworks for wind loading on structures in mixed climates. Omitting for sake of simplicity tropical cyclones and tornadoes, three main aspects are pointed out. The first concerns the separation and classification of different intense wind events into extra-tropical depressions, thunderstorms and gust fronts, with the aim of improving the interpretation of the phenomena of engineering interest, the probabilistic analysis of the maximum wind velocity, the determination of the wind-induced response and the safety format for structures. The second deals with the use of the response spectrum technique, not only as a potentially efficient tool for calculating the structural response to thunderstorms, but also as a mean for revisiting the whole wind-excited response in a more general and comprehensive framework. The third involves the statistical analysis of extreme wind velocities in mixed climates, pointing out some shortcomings of the approaches currently used for evaluating wind loading on structures and depicting a new scenario for a more rational scheme aiming to pursue structural safety. The paper is set in the spirit of mostly simplified analyses and mainly qualitative remarks, in order to capture the conceptual aspects of the problems dealt with and put on the table ideas open to discussion and further developments.

Structure and Evolution of a Numerically Simulated Thunderstorm Outflow (수치 모사된 뇌우 유출의 구조와 진화)

  • Kim, Yeon-Hee;Baik, Jong-Jin
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.857-870
    • /
    • 2007
  • The structure and evolution of a thunderstorm outflow in two dimensions with no environmental wind are investigated using a cloud-resolving model with explicit liquid-ice phase microphysical processes (ARPS: Advanced Regional Prediction System). The turbulence structure of the outflow is explicitly resolved with a high-resolution grid size of 50m. The simulated single-cell storm and its associated Kelvin-Helmholtz (KH) billows are found to have the lift stages of development maturity, and decay. The secondary pulsation and splitting of convective cells resulted from interactions between cloud dynamics and microphysics are observed. The cooled downdrafts caused by the evaporation of rain and hail in the relatively dry lower atmosphere result in thunderstorm cold-air outflow. The outflow head propagates with almost constant speed. The KH billows formed by the KH instability cause turbulence mixing from the top of the outflow and control the structure of the outflow. Ihe KH billows are initiated at the outflow head, and pow and decay as moving rearward relative to the gust front. The numerical simulation results of the ratio of the horizontal wavelength of the fastest growing perturbation to the critical shear-layer depth and the ratio of the horizontal wavelength of the billow to its maximum amplitude are matched well with the results of other studies.