• 제목/요약/키워드: Thrust Variation Force

검색결과 45건 처리시간 0.024초

역방향 토크시 무단변속기 동력전달 특성과 제어로직 (CVT Power Transmitting Characteristics and Control Logics for Negative Torque)

  • 송한림;이희라;김현수
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.255-264
    • /
    • 2002
  • In this paper, the power transmitting mechanism for negative torque of the metal V-belt (MVB) CVT were investigated by theoretically analyzing variation of band tension, block compression forces for each of the primary and secondary pulleys. An experimental study was performed to investigate the speed ratio - thrust characteristics for negative torque. The experimental results are in good acoordance with the theoretical results. CVT line pressure control logic was suggested for negative torque based the speed radio - negative torque - thrust characteristics and the thrust ratio curves. The results of this study can be used as basic design materials for developing the CVT control system for negative torque.

하이드라진 추력기의 펄스모드 성능특성인자 해석 (Factors Characterizing the Pulse-mode Performance of Monopropellant Hydrazine Thrusters)

  • 김정수;박정;이재원;김인태
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.399-404
    • /
    • 2010
  • 추진제 주입압력 350 psia 에서 0.95 lbf 의 정상상태 공칭추력을 내는 단일액체추진제 하이드라진 추력기의 펄스모드 시험 결과를 추진제 공급압력, 추력기 작동환경 진공도, 그리고 추력펄스 등의 변이와 함께 추력기의 열적 반응거동과 더불어 제시한다. 시험자료는 임펄스 비트, 진공 비추력, Force Centroid 등의 펄스모드 성능특성인자로 변환되어 상세한 분석이 이루어지고, 1 lbf급 표준형 단일추진제 로켓엔진의 펄스모드 기준성능과 성공적으로 비교된다.

  • PDF

자기부상열차의 추진시스템과 부상시스템의 상호 영향 (The Dynamic Interaction Between Propulsion And Levitation System In a MAGLEV)

  • 김국진;강병관;이종성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.119-128
    • /
    • 1998
  • An electromagnets and a single-sided linear induction motor(SLIM) are used for suspension and propulsion equipment respectively. The electromagnets and SLIM are installed in the same frame, called a bogie, to reduce the volume under the vehicle floor and to raise the response charateristics to follow the track. Then the 3-dimensional forces(thrust force, normal force, side force) generated by SLIM direct]y affect the suspension system as the disturbance force. Moreover, in the running condition, the gap length variation in the electromagnets is the same as the SLIM. Therefore, the mutual interaction between the electromagnets and the SLIM is an important problem to realize the smaller gap length. In this paper, the dynamic interaction is analyzed and confir

  • PDF

사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제2보 - 그루브 깊이의 영향 (THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 2 - Effect of Groove Depth)

  • 박태조;강정국
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.21-27
    • /
    • 2023
  • Surface texturing is widely applied to friction surfaces of various machine elements. Most of the theoretical studies have focused on isothermal (ISO) analyses which consider constant lubricant viscosity. However, there have been limited studies on the effect of oil temperature increase owing to viscous shear. Following the first part of the present study that investigated the effects of film-temperature boundary condition (FTBC) and groove number on the thermohydrodynamic (THD) lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves, this study focuses on the effect of groove depths. Current study numerically analyzes the continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations using a commercial computational fluid dynamics (CFD) software, FLUENT. The results of variation in temperature, velocity, and pressure distributions as well as load-carrying capacity (LCC) and friction force indicate that groove depth and FTBC significantly influence the temperature distribution and pressure generation. The LCC is maximum near the groove depth at which the vortex starts, smaller than the ISO result. For intense grooves, the LCC of THD may be larger than that from ISO. The frictional force decreases as the groove becomes deeper, and decreases more significantly in the case of THD. The study shows that groove depth significantly influences the THD lubrication characteristics of surface-textured parallel thrust bearings.

고속 주축베어링의 볼 접촉각 변동을 고려한 주축 설계공차 (Design Tolerance of High Speed Spindle considering the Variation of Ball Contact Angle in the Angular Contact Ball Bearings)

  • 이찬홍
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.609-615
    • /
    • 2010
  • Angular contact ball bearings in a high speed spindles are under the extreme conditions, such as high temperature, big centrifugal force and thrust cutting forces. So, the assembly contacts between spindle shaft and inner ring bearings, bearing housing and outer ring of bearings are occasionally unstable at high speed revolution. Furthermore, the ball contact angle of a bearing, which influence stiffness and lifetime of bearings, are changed according to loads and rotational speed. To analyze internal forces of a bearing under high speed revolution, the ball contact are calculated using nonlinear equations in consideration of rotational speed, thrust loads and raceway form. Diameter increase of inner and outer ring by influence factors, such as internal forces to inner and outer ring, centrifugal force and temperature of inner and outer rings are calculated to establish stable state in bearing assembly in high speed spindle. Finally, contribution ratio of influence factor to assembly design tolerance of inner and outer rings are shown and the stable assembly design tolerance are proposed.

부분 자기 차폐된 마그네트 휠의 선형구동기로의 응용 (Linear Actuator using Magnetic Shield of Rotating Magnet Wheel)

  • 심기본;박준규;이상헌;정광석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.923-925
    • /
    • 2008
  • As known generally, when permanent magnets whose poles are upward and downward in order, arranged into the circumferential direction rotate under the conducting plate, the rotating force acts on the plate as well as the repulsive force. If the magnetic field by the magnet wheel(the above rotating permanent magnets) is partially shielded, the magnet wheel over open region can be a linear induction motor. The distinct feature from induction motor is that the traveling magnet field is produced by the moving permanent magnet instead of ac current. Furthermore, a variation of the open region changes the direction of the thrust force. In this paper, we introduce a concept of the linear actuator using the magnet wheel. Under the above shielding condition, a few simulation results and its verification from a simple test setup are described.

  • PDF

끝단질량을 갖고 아접선력을 받는 외팔 수직기둥의 동적 안정성 (Dynamic Stability of a Cantilevered Vertical Column Subjected to a Subtangential Force and Having a Tip Mass)

  • 박영필;류봉조;이규섭;김인성
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.245-251
    • /
    • 1997
  • The dynamic behavior of elastic columns under the action of the subtangential force is studied in this paper. The subtangential force is the combination of the tip mass dead load and pure follower thrust. In this study, the tip mass is assumed to be a rigid body rather than a point mass. The equations of motion are derived based on the extended Hamilton's principle and the finite element method. Then the equations of motion are trasformed into a dimensionless form, and several parameters are identified. It is found that the critical subtangential force can be changed subtangentially by considering the parameters related to tip mass. It is also shown that the nonconservativeness of the applied force has a significant effect on the type of instability. The influence of the self-weight of the column on the variation of the critical force is also investigated.

Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow

  • Sun, Shuai;Li, Liang;Wang, Chao;Zhang, Hongyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권1호
    • /
    • pp.69-84
    • /
    • 2018
  • In order to analyze the characteristics of propeller exciting force, the hybrid grid is adopted and the numerical prediction of KCS ship model is performed for hull-propeller-rudder system by Reynolds-Averaged Navier Stokes (RANS) method and volume of fluid (VOF) model. Firstly, the numerical simulation of hydrodynamics for bare hull at oblique state is carried out. The results show that with the increasing of the drift angle, the coefficients of resistance, side force and yaw moment are constantly increasing, and the bigger the drift angle, the worse the overall uniformity of propeller disk. Then, propeller bearing force for hull-propeller-rudder system in oblique flow is calculated. It is found that the propeller thrust and torque fluctuation coefficient peak in drift angle are greater than that in straight line navigation, and the negative drift angle is greater than the positive. The fluctuation peak variation law of coefficient of side force and bending moment are different due to various causes.

측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part I. 제트 유동특성 영향 (Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part I. Jet Flow Condition Effect)

  • 민병영;이재우;변영환;현재수;김상호
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.64-71
    • /
    • 2004
  • 측 추력(Lateral Jet)을 이용하여 자세를 제어하는 미사일 주위의 초음속 유동장 해석을 위하여 삼차원 Navier-Stokes 코드 (AADL3D)를 개발하고, 이를 이용한 수치해석 연구를 수행하였다. 분출 제트 압력, 분출 마하수 등을 포함하는 제트의 유동특성이 미사일에 미치는 수직력 및 피칭모멘트에 대한 영향을 알아보기 위한 사례연구를 수행하였으며, 공력 해석 결과 제트의 분출 압력과 분출 마하수 변화에 따른 서로 다른 수직력과 모멘트 변화 양상 및 그 원인을 확인할 수 있었다. 또한 대부분의 수직력 손실과 피칭모멘트 발생은 노즐 후방의 저압영역에 의한 것이며, 동일한 제트 추력일지라도 분출 마하수가 큰 경우가 분출 압력이 큰 경우보다 모멘트 발생 최소화에 유리함을 확인하였다.

초소형 가스 터빈 제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구 (Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine Generator)

  • 이용복;곽현덕;김창호;장건희
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.467-475
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce an excitation force due to narrow pressure distribution.