• Title/Summary/Keyword: Thrust Performance

Search Result 910, Processing Time 0.022 seconds

Nonlinear Acceleration Controller Design for DACS Type Kill Vehicle (DACS형 직격요격비행체의 비선형 가속도 조종루프 설계)

  • Lee, Chang-Hun;Kim, Tae-Hun;Jun, Byung-Eul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.54-64
    • /
    • 2015
  • This paper deals with an acceleration controller design for a kill vehicle equipped with a divert and attitude control system (DACS). In the proposed method, the attitude control system (ACS) is used to produce the thrust command to nullify angle-of-attack. For the angle-of-attack control, a nonlinear angle-of-attack controller is proposed based on the feedback linearization methodology. Since the flight path angle is identical to the attitude angle under the condition of zero angle-of-attack, the divert control system (DCS) can directly produce the lateral acceleration which is demanded from the guidance loop. In the proposed method, we can minimize the aerodynamic uncertainty due to the propulsive force. Additionally, we can simplify the operation logic of DCS and ACS. In this paper, nonlinear simulations are performed to show the performance of the proposed method.

Development and Launching Test of 10N Class Liquid Propellant Rocket (10뉴턴급 추진력의 액체로켓 개발 및 발사시험)

  • Lee, Jung-Sub;Choi, Won-June;Kim, Min-Ki;Moon, Ki-Hyun;Song, Seong-Hwan;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.375-379
    • /
    • 2008
  • In this paper, a 10N class liquid propellant rocket utilizing a dissolving reaction of hydrogen peroxide is constructed and tested. Through a series of designs, seven orifices with a diameter of 200 ${\mu}m$ and a nozzle with a neck of 2.5mm in diameter and area ratio of 2.56 were made. The platinum coated on Isolite was used for catalyst. 90wt% peroxide pressed at 20 bar by nitrogen gas was used for performance evaluation. The length of the catalyst bed and the load of platinum was taken as the parameters for this experiment. For the catalyst support length of 4cm loaded on 5wt% platinum, satisfactory $c^*$ efficiency and stable thrust was observed. The light weight body of the rocket was composed of aluminum. Rocket rose about 10m with relatively constant velocity in launching test.

  • PDF

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chung, Yong-Gahp;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.502-506
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.

  • PDF

Modeling and Simulation of Combustion Chamber Test Facility Fuel Supply System (연소기 연소시험 설비 연료 공급 시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

Study on the Manoeuvring Characteristics of a Ship with Stern Bulb (선미벌브를 갖는 선박의 조종특성에 관한 연구)

  • Kyoung-Ho Sohn;Gyoung-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.65-79
    • /
    • 1994
  • In the present paper, An emphasis is laid upon effects of stern bulb on hydrodynamic property and manoeuvring performance. We carried out captive model tests in circulating water channel with two ship models of which the frame lines of aft bodies are different. such as normal stern form and stern form with bulb, but of which the other parts are exactly same. The tests conducted consist of hull resistance test, effective thrust measurement, oblique tow test, and measurements of factors related to rudder force. From the results of model tests, we discussed effects of stern bulb on hull forces and on hull-propeller-rudder interactions, comparing with normal stern form. Furthermore, we also discussed effects of stern bulb on course stability. turning ability. spiral characteristics and zig-zag manoeuvre by computer simulation. As a result, it is clarified that the adoption of stern bulb makes course stability the worse and turning ability the better. The difference of the hydrodynamic derivatives of naked hull between two ship forms cause the worse course stability of the ship with stern bulb. The differences of the effective inflow velocity to rudder and hull forces induced by steered rudder cause the better turning ability of the ship with stern bulb.

  • PDF

Design formulas for vibration control of sagged cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie F. Jr.;Ko, Jan-Ming;Dong, Shenghao
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.537-551
    • /
    • 2019
  • In this paper, a method for analyzing the damping performance of stay cables incorporating magnetorheological (MR) dampers in the passive control mode is developed taking into account the cable sag and inclination, the damper coefficient, stiffness and mass, and the stiffness of damper support. Both numerical and asymptotic solutions are obtained from complex modal analysis. With the asymptotic solution, analytical formulas that evaluate the equivalent damping ratio of the sagged cable-damper system in consideration of all the above parameters are derived. The main thrust of the present study is to develop an general design formula and a universal curve for the optimal design of MR dampers for adjustable passive control of sagged cables. Two sag-affecting coefficients are derived to reflect the effects of cable sag on the maximum attainable damping ratio and the optimal damper coefficient. For the cable configurations commonly used in cable-stayed bridges, the sag-affecting coefficients are directly expressed in terms of the sag-extensibility parameter to facilitate the control design. A case study on adjustable passive vibration control of the longest cable (536 m) on Stonecutters Bridge is carried out to demonstrate the influence of the sag for the damper design, and to figure out the necessity of adjustability of damper coefficients for achieving maximum damping ratio for different vibration modes.

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

Experimental Study of the POW Characteristics using High-capacity Inclined-shaft Dynamometer (고용량 경사류용 동력계를 이용한 프로펠러 단독시험 특성의 실험적 연구)

  • Ahn, Jong-Woo;Kim, Ki-Sup;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.168-174
    • /
    • 2019
  • In order to investigate Propeller Open Water (POW) characteristics for the high-speed propeller in Large Cavitation Tunnel (LCT), the high-capacity inclined-shaft dynamometer was designed and manufactured. Its measuring capacities of thrust and torque are ${\pm}2200N$ and ${\pm}120N-m$, respectively. The driving motor is directly connected to the propeller shaft. Inclined angle of the propeller shaft can be adjusted up to ${\pm}10^{\circ}$. As the pressure inside LCT can be adjusted in the range of 0.1~3.0bar, we can carry out the POW test at high Reynolds number (above $1.0{\times}10^6$) without propeller cavitation and the cavitation test in uniform flow. After the new dynamometer setup in LCT, the Reynolds number variation test and propeller open-water test were conducted at the inclined angle of $0^{\circ}$ and $6^{\circ}$. The present POW results of the new dynamometer are compared with those of the existing high-capacity dynamometer in LCT and of the dynamometer in the towing-tank. Through systematic model tests and comparison with their results, the performance of the new inclined-shaft dynamometer was verified. It is thought the POW test for the high-speed propeller should be better conducted at high Reynolds number.

An Experimental Study of Tri-arc Rotating Detonation Engine Using Gaseous Ethylene/Oxygen (기체 에틸렌/산소 Tri-arc 회전 데토네이션 엔진 실험연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-28
    • /
    • 2021
  • In rotating detonation engine(RDE), only the detonation wave is moving around the outer wall of the combustor. Neither a mechanical part nor flow is rotating in RDE. Thus, the RDE cross section is not necessary to be circular, but arbitrary closed section is possible. A RDE of tri-arc cross section is designed and As an example of an arbitrary cross sectioned RDE, a RDE of tri-arc cross section is designed in this study, and operational and performance characteristics were examined experimentally. The rotation of the detonation wave is confirmed by dynamic pressure sensor and high-speed camera, while the characteristics of the detonation wave were investigated at the concave and convex surfaces. In the present study, the thrust level of 17.0 N to 96.0 N was obtained depending on the mass flow rate.

Study on Velocity and Altitude Keeping Method of a UAV Around Service Ceiling Altitude (실용상승한도 고도 부근에서 무인기의 속도 및 고도유지 제어에 관한 연구)

  • Hong, Jin-sung;Won, Dae-yeon;Jang, Se-ah
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.383-388
    • /
    • 2021
  • Air-breathing engines used in aircraft have a performance limit as the altitude increases, and this determines the service and absolute ceiling altitude. The method of maintaining altitude and speed in a fixed-wing aircraft in level flight using classical control method is generally using thrust for speed increase/deceleration and pitch attitude for altitude increase/decrease. If this method is used near the service ceiling altitude, increasing the pitch to reduce the altitude error results in a speed reduction. Therefore, it is necessary to use a control method that maintains the speed first using the pitch attitude. Especially in the case of unmanned aerial vehicles, these two methods should be automatically available at the right time. In this paper, we propose a method of switching the speed and altitude maintenance algorithm near service ceiling altitude.