• Title/Summary/Keyword: Thrust Performance

Search Result 911, Processing Time 0.028 seconds

Numerical Simulations for Suppressing Transverse Vibration of a very Flexible Rotating Disk using Air Bearing Concept (고속 회전 유연 디스크의 진동 저감용 공기 베어링 해석)

  • Lee Sung-ho;Rhim Yoon-chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.175-185
    • /
    • 2004
  • Rotating disks are used in various machines such as data storage device, gyroscope, circular saw, etc. Transverse vibration of a rotating disk is very important for the performance of these machines. This work proposes a method to suppress transverse vibration of a very flexible rotating disk in non-contacting manner. A system considered in this study is a very flexible rotating disk with a thrust bearing pad which is located underneath the rotating disk. The pressure force generated in the gap between the rotating disk and the thrust pad pushes the rotating disk in the direction of axis of rotation while the centrifugal force and the elastic recovery force push the rotating disk in reverse direction. The balance between these forces suppresses the transverse vibration of the rotating disk. A coupled disk-fluid system is analyzed numerically. The finite element method is used to compute the pressure distribution between the thrust pad and the rotating disk while the finite difference method is used to compute the transverse vibration of a rotating disk. Results show that the transverse vibration of the rotating disk can be suppressed effectively for certain combination of air bearing and operating parameters.

  • PDF

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구)

  • Park, Hyung-Ju;Kim, Li-Na;Heo, Jun-Young;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.213-217
    • /
    • 2011
  • Unsteady numerical simulations of pintle nozzles were implemented for solid rocket thrust vector control. The variation of pintle location was considered using unsteady numerical techniques, and dynamic characteristics of various pintle models were investigated. In order to consider the variation of the pintle location, a moving mesh method was applied. The effects of shape and location of the pintle nozzle have been analytically investigated. And the results were compared with numerical results. The chamber pressure, mass flow and thrust are analyzed to take account dynamic characteristics of pintle performance.

  • PDF

Pressure Control of a Variable Thrust Solid Propulsion System Using On-Off Controllers (On-Off 제어기를 이용한 가변추력 고체추진 기관의 압력제어)

  • Kwon, Soon-Kyu;Kim, Young-Seok;Ko, Sang-Ho;Suh, Seok-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.942-948
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we introduce controllers for combustion chamber pressure using on-off control techniques which have been known for relatively easy implementation and energy efficiency. For this, we use a simple pressure change model by considering only mass conservation within the combustion chamber and we design a classical controllers and on-off controllers with are Pulse Width Modulation(PWM) and Pulse Width Pulse Frequency Modulation (PWPFM). Then we compare the performance results of the controllers through numerical simulations.

  • PDF

An experimental study on the dynamic behavior in an aero-valved pulsating combustor (공기밸브형 맥동연소기의 동적 특성에 관한 실험적 연구)

  • 임광열;최병륜;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.846-855
    • /
    • 1987
  • The experimental study was carried out to investigate the performance characteristics of the aero-valved pulsating combustor designed to increase the practical applications of the system. The geometric effect on the stable condition and the dynamic behavior of the system is identified. The equivalence ratio, the inflammability limit, the operating frequency, and thrust were also measured when the system oscillated stably. It is found that while the operating condition is sensitive to the diameter of the inlet pipe and the length of the tailpipe, the maximum value of the turn down ratio was obtained up to 3.2. The measured air flow rate shows that the equivalence ratio increases monotonously with the increasing fuel flow rate and decreasing air inlet diameter and tailpipe length. The measured operating frequency can be approximated by the simple linear equation and the discrepancy is within five percent. The system produced the maximum total thrust of 14N and the minimum specific fuel consumption of 0.155 Nm$^{3}$/h.N when the total thrust was 13N.

An Effective Pivot Trace Algorithm for Movable Nozzle using Neural Network (신경망을 적용한 가동노즐의 유효 피봇 추적 알고리즘)

  • Kim Joung-Keun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.73-80
    • /
    • 2005
  • In general, the performance of movable nozzle used for thrust vector control in solid rocket motor is estimated on the basis of the effective pivot of nozzle. However, it is nearly impossible to define the exact effective pivot by the mathematical model or experimental technique owing to pivot dynamics. In this paper, pivot dynamic properties were investigated by ADAMS simulation technique and trajectory of the exact effective pivot was modelled by the artificial neural network. Comparison of the proposed method was made with the virtual movable nozzle (computer simulation) to verify the method, and showed good agreement. Therefore, the proposed method will be applicable to predict the effective pivot of movable nozzle during bench or ground test.

Groove manufacturing for Fluid and Aero Dynamic Bearings using Chemical Etching (화학적 에칭을 이용한 유체 및 공기 동압 베어링용 그르브 가공)

  • Lee, Yong-Geun;Kim, Sang-Uk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.225-227
    • /
    • 2012
  • This paper presents a chemical etching system for groove manufacturing for the fluid and aero dynamic bearings. To manufacture the grooves to thrust and journal surface of the fluid and aero dynamic bearing, it is very important for grooves' depth to be smaller tolerance. It is very difficult for the internal surface of journal bearing to make the grooves precise. If the precision of the groove is not exact, we can not get the desirable performance for the target of the dynamic bearing. To make the groove of bearing precise, we propose the method of chemical etching system. It has known that the method of chemical etching can not make the groove on the internal surface of journal bearing excepts for on the surface of thrust bearing. However, this paper has shown the solution to make the grooves on it. We obtain the condition and the parameters of the system such as time, chemical material composition and so on. In this paper, we get the experimental results to verify the precise groove manufacturing for the fluid and aero dynamic bearing.

Evaluation of the Disk-to-Body Friction Load by the Side Flow in Motor-Operated Globe Valves (모터구동 글로브밸브의 Side Flow에 의한 디스크-몸체 마찰부하 평가)

  • Jeoung, Rae-Hyuck;Park, Sung-Keun;Lee, Do-Hwan;Song, Seok-Yoon;Kang, Shin-Cheul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.549-554
    • /
    • 2003
  • EPRI PPM (Performance Prediction Methodology), a method used for the prediction of required thrust of valves, can not be applied to unbalanced-disk globe valves operated in the fluid when the fluid temperature is above $150^{\circ}F$ because the thrust increase caused by the friction between the valve disk and body is not considered in the PPM. In order to apply PPM to the valves, EPRI suggested new friction prediction method to be added in the code. This paper analyzes the applicability of the prediction method comparing the disk-to-body friction load predicted from the method with the measured friction load from the field tests. The maximum values from the prediction method and those obtained from the test were 268lbs and about 1500lbs, respectively. It is included that the prediction method should be improved for the realistic prediction of disk-to-body friction load.

  • PDF

Ground Firing Test Facility of Hybrid Rocket Engine (하이브리드로켓엔진 지상연소시험 설비)

  • Kim, Soo-Jong;Kim, Gi-Hun;Cho, Jung-Tae;Cho, Min-Kyoung;Do, Gyu-Sung;So, Jung-Soo;Heo, Jun-Young;Lee, Jung-Pyo;Park, Su-Hayng;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.251-254
    • /
    • 2008
  • Ground firing test facility and test field for firing test of hybrid rocket engine were constructed. Ground firing test facility were composed of hybrid rocket engine, thrust stand, oxidizer storage/supply system, control system and data acquisition system. Firing tests of thrust 50 kgf class were conducted. Stable performance data was obtained and operational reliability of ground firing test facility were found.

  • PDF

Numerical Analysis of the Effect of Fuselage of Fan-in-body Aircraft on the Pusher Propeller

  • Kang, Jiwook;Jang, Jisung;You, Younghyun;Hyun, Youngo;Lee, Jonghun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.26-35
    • /
    • 2021
  • In this study, CFD analysis was conducted to compare the aerodynamic performance of the isolated propeller and pusher propeller, which is affected by the wake of wide fuselage. The moving reference frame (MRF) method was used for isolated propeller analysis, while the MRF and sliding mesh method were used sequentially for the pusher propeller to analyze the change in the aerodynamic characteristics based on the azimuth angle. Under the same torque condition, the thrust of the pusher propeller was greater than that of the isolated propeller. Thrust increment of the pusher propeller was mainly generated near the root of the blade where the fuselage wake was concentrated. The net efficiency of the pusher propeller was greater than or equal to that of the isolated propeller. Because of the flat fuselage shape, thrust and torque of the pusher propeller periodically changed with the rotation of the propeller.

Comparative study on the prediction of speed-power-rpm of the KVLCC2 in regular head waves using model tests

  • Yu, Jin-Won;Lee, Cheol-Min;Seo, Jin-Hyeok;Chun, Ho Hwan;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.24-34
    • /
    • 2021
  • This paper predicts the speed-power-rpm relationship in regular head waves using various indirect methods: load variation, direct powering, resistance and thrust identity, torque and revolution, thrust and revolution, and Taylor expansion methods. The subject ship is KVLCC2. The wave conditions are the regular head waves of λ/LPP = 0.6 and 1.0 with three wave steepness ratios at three ship speeds of 13.5, 14.5 and 15.5 knots (design speed). In the case of λ/LPP = 0.6 at design speed, two more wave steepness ratios have been taken into consideration. The indirect methods have been evaluated through comparing the speed-power-rpm relationships with those obtained from the resistance and self-propulsion tests in calm water and in waves. The load variation method has been applied to predict propulsive performances in waves, and to derive overload factors (ITTC, 2018). The overload factors have been applied to obtain propulsive efficiency and propeller revolution. The thrust and revolution method (ITTC, 2014) has been modified.