• Title/Summary/Keyword: Thrust Determination

Search Result 32, Processing Time 0.029 seconds

Study on the procedure to obtain an attainable speed in pack ice

  • Kim, Hyun Soo;Jeong, Seong-Yeob;Woo, Sun-Hong;Han, Donghwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.491-498
    • /
    • 2018
  • The cost evaluation for voyage route planning in an ice-covered sea is one of the major topics among ship owners. Information of the ice properties, such as ice type, concentration of ice, ice thickness, strength of ice, and speed-power relation under ice conditions are important for determining the optimal route in ice and low operational cost perspective. To determine achievable speed at any designated pack ice condition, a model test of resistance, self-propulsion, and overload test in ice and ice-free water were carried out in a KRISO ice tank and towing tank. The available net thrust for ice and an estimation of the ice resistance under any pack ice condition were also performed by I-RES. The in-house code called 'I-RES', which is an ice resistance estimation tool that applies an empirical formula, was modified for the pack ice module in this study. Careful observations of underwater videos of the ice model test made it possible to understand the physical phenomena of underneath of the hull bottom surface and determine the coverage of buoyancy. The clearing resistance of ice can be calculated by subtracting the buoyance and open water resistance form the pre-sawn ice resistance. The model test results in pack ice were compared with the calculation results to obtain a correlation factor among the pack ice resistance, ice concentration, and ship speed. The resulting correlation factors were applied to the calculation results to determine the pack ice resistance under any pack ice condition. The pack ice resistance under the arbitrary pack ice condition could be estimated because software I-RES could control all the ice properties. The available net thrust in ice, which is the over thrust that overcomes the pack ice resistance, will change the speed of a ship according to the bollard pull test results and thruster characteristics (engine & propulsion combination). The attainable speed at a certain ice concentration of pack ice was determined using the interpolation method. This paper reports a procedure to determine the attainable speed in pack ice and the sample calculation using the Araon vessel was performed to confirm the entire process. A more detailed description of the determination of the attainable speed is described. The attainable speed in 1.0 m, 90% pack ice and 540 kPa strength was 13.3 knots.

Determination of Optimum Micro Drilling Conditions Using Experimental Design Methods (실험계획법에 의한 마이크로 드릴링 공정의 최적 절삭조건 결정)

  • 김동우;조명우;이응숙;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.993-998
    • /
    • 2002
  • watches, air bearings and printed circuit hoards (PCB). However, it is not easy to determine optimum cutting conditions since the micro drilling process is very sensitive to various disturbances. Also, undesirable characteristics to optimize the micro drilling are small signal-to-noise ratios, drill wandering motions and high aspect ratios. Thus, in this study, experimental design methods are applied to determine optimum cutting conditions. Suing the methods, three cutting parameters, fred, step and curving speed are optimized to minimize thrust forces. Obtained conditions are verified through required experimental works. As the results, it is shown that the experimental methods can be applied to micro drilling processes to determine Optimum Cutting Conditions.

  • PDF

Characteristic Analysis and Test of a Voice-Coil-Type LOA for Determination of Control Parameters (보이스코일형 LOA의 제어정수 산정을 위한 특성 해석 및 시험)

  • Jang, S.M.;Jeong, S.S.;Park, H.C.;Moon, S.J.;Park, C.I.;Chung, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.278-280
    • /
    • 1998
  • A voice-coil-type LOA consists of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure, and an iron core as a pathway for magnetic flux. When applying a voice-coil-type LOA to the control system, we have to obtain the control parameters and circuit parameters, such as mass, coil inductance, coil resistance, thrust voltage & stroke, frequency & stroke and so on. Therefore, these parameter were determined from the analytical and experimental method.

  • PDF

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630 (관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響))

  • Sae-Kyoo,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

A Study on the Determination of the Performance Correction Factors of Solid Rocket Motors (고체추진기관의 성능 보정계수 예측방법에 관한 연구)

  • 성홍계;변종렬;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.57-66
    • /
    • 2001
  • The precise prediction of the performance is essential to develope the system at the development of propulsion system since no experimental data are available. The accuracy of 1on the total system's performance as well as itself, which depends on how the correction fac $I_{sp}$, and so on, are determined in accurate. However some of the design factors are dete engineer's experience or the similar test data if they are available, so far. This study was the method of the determination of correction factors of both $I_{sp}$ and thrust in direct. The bas is to define the detail performance loss mechanism of solid rocket motors, might be occurre and to calculate in quantitative those correction factors from the performance loss mechanism the test results, the model of this study can predict those factors less than 1% error, in additi physical variances of each loss mechanism.

  • PDF

Reference Trajectory Optimization of a Launch Vehicle M-3H-3 for Scientific Missions (과학위성 발사체 M-3H-3의 기준궤적 최적화)

  • Lee, Seung-H.;Choi, Jae-W.;Lee, Jang-G.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.361-365
    • /
    • 1991
  • The problem being considered here is the determination of optimal guidance laws for a launch vehicle for scientific missions. The optimal guidance commands are determined in the sense that the least amount of fuel is used. A numerical solution was obtained for the case where the position and velocity state variables satisfy a specified constraint at the time of thrust cutoff. The method used here is based on the Pontryagin's maximum principle. This is the method of solving a problem in the calculus of variations. In particular, it applies to the problem considered here where the magnitude of the control is bounded. Simulations for the optimal guidance algorithm, during the 2nd and the 3rd-stage flight of the Japanese rocket M-3H-3, are carried out. The results show that the guided trajectory that satisfying the terminal constraints is optimal, and the guidance algorithm works well in the presence of some errors during the 1st-stage pre-programmed guidance phase.

  • PDF

Determination of effective parameters on surface settlement during shield TBM

  • Kim, Dongku;Pham, Khanh;Park, Sangyeong;Oh, Ju-Young;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.153-164
    • /
    • 2020
  • Tunnel excavation in shallow soft ground conditions of urban areas experiences inevitable surface settlements that threaten the stability of nearby infrastructures. Surface settlements during shield TBM tunneling are related to a number of factors including geotechnical conditions, tunnel geometry and excavation methods. In this paper, a database collected from a construction section of Hong Kong subway was used to analyze the correlation of settlement-inducing factors and surface settlements monitored at different locations of a transverse trough. The Pearson correlation analysis result revealed a correlation between the factors in consideration. Factors such as the face pressure, advance speed, thrust force, cutter torque, twin tunnel distance and ground water level presented a modest correlation with the surface settlement, while no significant trends between the other factors and the surface settlements were observed. It can be concluded that an integrated effect of the settlement-inducing factors should be related to the magnitude of surface settlements.

Determination of an Optimum Orbiting Radius for an Oil-Less Scroll Air Compressor

  • Kim, Hyun-Jin;Lee, Yong-Ho;Kwon, Tae-Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.124-129
    • /
    • 2008
  • Design practice has been made on an oil-less scroll air compressor as an air supply device for a 2 kW fuel cell system where air pressure of 2 bar and flow rate of 120 liter/min are required. Basic structure of the scroll compressor includes double-sided scroll wrap for the orbiting scroll driven by two crankshafts connected to each other by a timing belt. These features can eliminate thrust surface which otherwise would produce frictional heat and jeopardize reliable operation of the orbiting scroll and the scroll element's deformation as well. This study focuses on optimum scroll wrap design; orbiting radius has been chosen as an independent design parameter. As the orbiting radius changes, scroll sizes such as scroll base plate and discharge port diameters change accordingly. Gas compression-related losses and mechanical loss also change with the orbiting radius. With a scroll base plate diameter of 120mm at most and discharge port of at least 10mm, the orbiting radius should be within the range of 2.5-4.0mm. With this range of the orbiting radius, it was estimated by performance analysis that the compressor efficiency reached to a maximum of ${\eta}_c$=96% at the orbiting radius of $r_s$=3.5mm for the scroll wrap height-to-thickness ratio of h/t=5.

End Edge Cogging Force Minimization according to the Distance between Armatures of Stationary Discontinuous Armature PMLSM with Concentrated Winding (전기자 분산배치 집중권 PMLSM의 전기자 간격에 따른 단부 코깅력 최소화)

  • Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1241-1246
    • /
    • 2013
  • Currently, The general transportation system arranges the armature on the full length of transportation lines. However, when this method is applied to the long distance transportation system, it causes an increase of material cost and manufacturing time. Thus, in order to resolve this problem, discontinuous arrangement method of the armature has been proposed. However, in the method of using stationary discontinuous armatures, mover can stop in the freewheeling section which is non-installations section when disturbance is generated and the mover can not be moved because armature control is impossible. Thus, the distance determination of armature is very important. Also, when the armature is arranged discontinuously the edge always exists due to the structure. Due to this edge, the cogging force is greatly generated during the entry and ejection of the mover to the armature. This cogging force causes thrust force ripple generating noise, vibration and decline of performance, it must be reduced. Therefore, in this paper, we examined the end edge cogging force generated by the stationary discontinuous armatures through 2-D numerical analysis using finite element method (FEM) and we figured out distance of armature for end edge cogging force minimization.