• Title/Summary/Keyword: Throughput and interference

Search Result 417, Processing Time 0.02 seconds

Distributed BS Transmit Power Control for Utility Maximization in Small-Cell Networks (소형 셀 환경에서 유틸리티 최대화를 위한 분산화된 방법의 기지국 전송 전력 제어)

  • Lee, Changsik;Kim, Jihwan;Kwak, Jeongho;Kim, Eunkyung;Chong, Song
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1125-1134
    • /
    • 2013
  • Small cells such as pico or femto cells are promising as a solution to cope with higher traffic explosion and the large number of users. However, the users within small cells are likely to suffer severe inter-cell interference (ICI) from neighboring base stations (BSs). To tackle this, several papers suggest BS transmit power on/off control algorithms which increase edge user throughput. However, these algorithms require centralized coordinator and have high computational complexity. This paper makes a contribution towards presenting fully distributed and low complex joint BS on/off control and user scheduling algorithm (FDA) by selecting on/off pattern of BSs. Throughput the extensive simulations, we verify the performance of our algorithm as follows: (i) Our FDA provides better throughput performance of cell edge users by 170% than the algorithm without the ICI management. (ii) Our FDA catches up with the performance of optimal algorithm by 88-96% in geometric average throughput and sufficiently small gap in edge user throughput.

Downlink Radio Resource Allocation Algorithm for Supporting Heterogeneous Traffic Data in OFDM/SDMA-based Cellular System (OFDM/SDMA 기반 셀룰러 시스템에서 다양한 트래픽 데이터를 지원하기 위한 하향링크 자원할당 알고리즘)

  • Heo Joo;Park Sung-Ho;Chang Kyung-Hi;Lee Hee-Soo;Ahn Jae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.254-266
    • /
    • 2006
  • Recently, researches about downlink resource allocation algorithms applying SDMA to enhance the system throughput and cell coverage have begun. Most OFDM/SDMA based resource allocation algorithms have some limitations such that those only concentrate on maximizing the system throughput or can be applied in single cell environment. In this paper, we propose an OFDM/SDMA based downlink resource allocation algorithm which considers high layer QoS parameters suitable for the required data traffic and it also minimizes the system throughput loss and considers inter-cell interference from adjacent cells. so it can be adopted in multi-cell environment. We manifest the performance of the proposed algorithm in Ped A and SCME MIMO Channel Model.

Active Secondary User Selection Algorithm of Opportunistic Spatial Orthogonalization Considering Interference by a Primary User (주 사용자의 간섭을 고려한 Opportunistic Spatial Orthogonalization의 활성 부 사용자 선택 알고리즘)

  • Yoo, Kang-Hyun;Kim, Yong-Hwa;Lee, Han-Byul;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.892-902
    • /
    • 2011
  • The opportunistic spatial orthogonalization (OSO) scheme, proposed by Cong Shen and Michael P. Fitz, allows the existence of secondary users during the period in which the primary user is occupying all licensed bands. This paper introduces an active secondary user selection algorithm which mitigates the interference from the primary user transmitter to the secondary user receiver based on single-input multi-output system without altering a primary user's transmission strategy. A proposed algorithm guarantees the minimum average throughput of the primary user and overcomes the average sum throughput of a conventional OSO. We have numerically analyzed the average throughput under various constraints.

Hybrid-clustering game Algorithm for Resource Allocation in Macro-Femto HetNet

  • Ye, Fang;Dai, Jing;Li, Yibing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1638-1654
    • /
    • 2018
  • The heterogeneous network (HetNet) has been one of the key technologies in Long Term Evolution-Advanced (LTE-A) with growing capacity and coverage demands. However, the introduction of femtocells has brought serious co-layer interference and cross-layer interference, which has been a major factor affecting system throughput. It is generally acknowledged that the resource allocation has significant impact on suppressing interference and improving the system performance. In this paper, we propose a hybrid-clustering algorithm based on the $Mat{\acute{e}}rn$ hard-core process (MHP) to restrain two kinds of co-channel interference in the HetNet. As the impracticality of the hexagonal grid model and the homogeneous Poisson point process model whose points distribute completely randomly to establish the system model. The HetNet model based on the MHP is adopted to satisfy the negative correlation distribution of base stations in this paper. Base on the system model, the spectrum sharing problem with restricted spectrum resources is further analyzed. On the basis of location information and the interference relation of base stations, a hybrid clustering method, which takes into accounts the fairness of two types of base stations is firstly proposed. Then, auction mechanism is discussed to achieve the spectrum sharing inside each cluster, avoiding the spectrum resource waste. Through combining the clustering theory and auction mechanism, the proposed novel algorithm can be applied to restrain the cross-layer interference and co-layer interference of HetNet, which has a high density of base stations. Simulation results show that spectral efficiency and system throughput increase to a certain degree.

Boosting the Uplink Throughput of OFDM Systems by Creating Resolvable Interference

  • Mohaisen, Manar;Hui, Bing;Chang, Kyung-Hi
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.113-121
    • /
    • 2011
  • Multiple-input multiple-output with orthogonal frequency division multiplexing technology (MIMO-OFDM) is considered to be the ultimate solution for increasing system throughput and for enhancing communication reliability. In this paper, we propose to increase the uplink (UL) throughput by assigning the same UL resources to multiple single-antenna mobile stations. This leads to the loss of orthogonality among sub-carriers. Thus, at the base station (BS), MIMO-OFDM detection techniques are used to separate the streams of different users assigned the same UL resources. To obtain a realistic performance evaluation, different channel scenarios are applied with different correlation values among the antennas of the users. Simulation results show that the proposed MIMO-OFDM system linearly increases the uplink capacity of the OFDM system while maintaining a mobile station transmitter as simple as that used in a conventional OFDM system. For instance, when 4 users are assigned the same UL resources, the throughput of the proposed system is 3.07 times that achieved by a conventional single input single output OFDM system.

Informed Spectrum Discovery in Cognitive Radio Networks using Proactive Out-of-Band Sensing

  • Jembre, Yalew Zelalem;Choi, Young-June;Paul, Rajib;Pak, Wooguil;Li, Zhetao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2212-2230
    • /
    • 2014
  • Cognitive radio (CR) users, known as secondary users (SUs), should avoid interference with primary users (PUs) who own the licensed band, while trying to access it; when the licensed band is unused by the PUs. To detect PUs, spectrum sensing should be performed over in-band channels that are currently in use by SUs. If PUs return to access the band, SUs need to vacate it, disrupting the SUs' communication unless a non-utilized band is discovered. Obtaining a non-utilized band in a short period facilitate seamless communication for SUs and avoid interference on PUs by vacating from the channel immediately. Searching for a non-utilized band can be done through proactive out-of-band (OB) sensing. In this paper, we suggest a proactive OB sensing scheme that minimizes the time required to discover a non-utilized spectrum in order to continue communication. Although, the duration spent on OB sensing reduces the throughput of the CR networks that can be achieved on band being utilized, the lost throughput can be compensated in the new discovered band. We demonstrate that, the effect of our proposed scheme on the throughput owing to OB sensing is insignificant, while exhibiting a very short channel discovery time.

Reduction of Outage Probability due to Handover by Mitigating Inter-cell Interference in Long-Term Evolution Networks

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin Mohd;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.554-563
    • /
    • 2014
  • The burgeoning growth of real-time applications, such as interactive video and VoIP, places a heavy demand for a high data rate and guarantee of QoS from a network. This is being addressed by fourth generation networks such as Long-Term Evolution (LTE). But, the mobility of user equipment that needs to be handed over to a new evolved node base-station (eNB) while maintaining connectivity with high data rates poses a significant challenge that needs to be addressed. Handover (HO) normally takes place at cell borders, which normally suffers high interference. This inter-cell interference (ICI) can affect HO procedures, as well as reduce throughput. In this paper, soft frequency reuse (SFR) and multiple preparations (MP), so-called SFRAMP, are proposed to provide a seamless and fast handover with high throughput by keeping the ICI low. Simulation results using LTE-Sim show that the outage probability and delay are reduced by 24.4% and 11.9%, respectively, over the hard handover method - quite a significant result.

Routing considering Channel Contention in Wireless Communication Networks with Multiple Radios and Multiple Channels (다수 라디오와 채널을 갖는 무선통신망에서 채널경쟁을 고려한 라우팅)

  • Ko, Sung-Won;Kang, Min-Su;Kang, Nam-Hi;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.7-15
    • /
    • 2007
  • In wireless communication networks, single-radio single-channel architecture degrades throughput and end-to-end delay due to half-duplex transmission of wireless node and route intra interference. Also, In contention-based MAC (Medium Access Control) architecture, channel contention reduces throughput and packet collision enlarges end-to-end delay. In this paper, we use multi-radio multi-channel architecture which will make wireless node to operate in full duplex mode, and exclude route intra interference. Based on this architecture, we propose a new link metric, ccf which reflects the characteristics of a contention-based wireless link, and propose a routing path metric MCCR considering channel switching delay and route intra interference. MCCR is compared with MCR by simulation, the performance of a route established by MCCR outperforms the performance of a route by MCR in terms of throughput and end-to-end delay.

An Analysis of the Effect of Doppler Spread on Transparent Multi-hop Relays Systems Based on OFDM (OFDM 기반의 트랜스패런트 다중 홉 릴레이 시스템에서 도플러 확산의 영향 분석)

  • Woo, Kyung-Soo;Cho, Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.40-46
    • /
    • 2007
  • In this paper, the effect of a Doppler Spread caused by a mobile station (MS) is analyzed for transparent mobile multi-hop relays (MMR) systems based on orthogonal frequency division multiplexing (OFDM). The exact expression of interchannel interference (ICI) power and the upper bounds of ICI power are derived for OFDM systems with cooperative MMR or non-coopeartive throughput enhancement (TE) MMR. Also, the exact signal-to-interference ratio (SIR) and its lower bound as well as ICI power and its upper bound, derived in this paper, are evaluated by computer simulation with the OFDM parameter set used for mobile WiMax (WiBro) systems.

A Fault-Tolerant QoS Routing Scheme based on Interference Awareness for Wireless Sensor Networks (무선 센서 네트워크를 위한 간섭 인지 기반의 결함 허용 QoS 라우팅 기법)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2012
  • In this paper, we propose a fault-tolerant QoS routing scheme based on interference awareness for providing both high throughput and minimum end-to-end delay for wireless sensor networks. With the proposed algorithm, it is feasible to find out the optimal transmission path between sensor nodes to the sink node by using cumulative path metric where real-time delivery, high energy efficiency and less interference are considered as in path selection. Finally, simulation results show that network throughput and delay can be improved by using the proposed routing scheme.