• Title/Summary/Keyword: Through Crack

Search Result 1,396, Processing Time 0.033 seconds

Evaluation of PWHT cracking susceptibility of the Cr-Mo steel alloys (Cr-Mo 합금강의 후열처리 균열 감수성 평가)

  • Kim, Sang-Jin;Kim, Ki-Soo;Lee, Young-Ho
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.200-210
    • /
    • 2006
  • This C-ring test, normally employed for evaluating susceptibility to stress-corrosion cracking, was determined to be a suitable small scale test to evaluate PWHT(Post-Weld Heat Treatment) cracking susceptibility. This test is possible to incorporate an actual weld, to introduce a notch into the coarse grained HAZ(Heat Affected Zone), to load the coarse grained HAZ any level of stress ad, most importantly, since the C-ring is an approximately constant strain type test, the stress decreases with time at temperature in a manner similar to that of an actual steel weldment. The procedure employed in making the C-ring was presented in the experimental procedure section, however, several points deserve further discussion. The walls of the weld groove are made along radial lines form the center of th var in order to obtain an HAZ which is oriented perpendicular to the walls of the machined C-ring. Therefore, the plane of maximum stress will be aligned through the HAZ and, therefore, crack propagation will not be forced to deviate form the plane of maximum stress in order to remain in the coarse grained HAZ as is the case with the Y groove test.

Determination of Convection Heat Transfer Coefficient Considering Curing Condition, Ambient Temperature and Boiling Effect (양생조건·외기온도·비등효과를 고려한 콘크리트 외기대류계수의 결정)

  • Choi Myoung-Sung;Kim Yun-Yong;Woo Sang-Kyun;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.551-558
    • /
    • 2005
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the convection heat transfer coefficient which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, curing condition and ambient temperature. At initial stage, the convection heat transfer coefficient is overestimated by the evaporation quantity. So it is essential to modify the thermal equilibrium considered with the boiling effect. From experimental results, the convection heat transfer coefficient was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent convection heat transfer coefficient including effects of velocity of wind, curing condition, ambient temperature and boiling effects was theoretically proposed. The convection heat transfer coefficient in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with curing condition. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the convection heat transfer coefficient by this model was well agreed with those by experimental results.

Failure Analysis of Corroded Coating Materials by Acoustic Emission (음향방출법에 의한 용사코팅 피막부식재의 파손 해석)

  • KIM GUI-SHIK;HYUN CHANG-HAE;HONG YONG-UI;SHON CHANG-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.43-49
    • /
    • 2005
  • This paper is to investigate the effect of corrosion by acoustic emission method in tensile loading and the adhesiveness between substrate and coating layer. The powders used are Zn and Amdry625, respectively. They are coated on brass alloy substrate. AE signals of Zn and Amdry625 coating layer increase drastically in strain $2\%$. However, those of Zn specimen have more than those of Amdry625 specimen. When the specimens executed the corrosion test under $3.5\%$ NaCl solution for 500, 1000 hours, the salt solution penetrated into the surface of the substrate through the pores of the coating layer. As a result, corrosion production formed on the surface of the substrate. The adhesiveness between coating layers is weakened by the polarization and corrosion itself. The AE event, count, and energy of corroded coating specimens decrease, compared to specimens without corrosion. The results are summarized as follows : 1. In the tensile tests, the time that it took to start and develop the cracks and exfoliations between the surface of the substrates and the plasma spray coatings were different according to the type of plasma sprayed material, which are Zn and Amdry625. These phenomena were obvious at the strain rate 1 to $5\%$, and few available data were found after that stage. 2. The specimens with Zn coating showed the characteristics of crack, according to the changes of the tensile strength applied on the substrates while those with Amdry625 showed exfoliation as a result of low adaptation to the tensile strength. 3. The anti-corrosion specimens showed that the adhesive properties between the substrate and the plasma spray coating were strong in the order of Zn, Amdry. It showed that Corroded specimens cracked or exfoliated easily, even with the small energy, because those had a comparatively weakened adhesive property, due to corrosion. 4. Zn specimen showed no corrosion phenomena on the surface of the substrates, because they had the function of sacrifice anode however, Amdry625 specimen showed the corrosion, because it did not have that function.

A Study on the Resistance of Stress Corrosion Cracking due to Expansion Methods for Steam Generator Tubes in Nuclear Power Plants (원전 증기발생기 전열관의 확관방법에 따른 응력부식균열 저항성 연구)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.149-157
    • /
    • 2014
  • The steam generator tubes of nuclear power plants have various types of corrosion failures during the plant operation. The stress corrosion cracking which occurs on the outer surface of tube is called the secondary side stress corrosion cracking and mainly occurs in the expansion-transition area of tube. The causes are the concentration of impurities by the sludge pile-up related to the geometry of its region and the residual stress by tube expansion in the process of steam generator manufacturing. Especially the directionality and sizes of residual stresses are differed according to the tube expansion methods and the direction and the frequency of tube cracks depend on their characteristics. In bases on the plant experiences, it is notified that circumferential cracks of tubes expanded with explosive expansion method are dominantly occurred compared to those of tubes done with hydraulic expansion one. Therefore in this study, according to tube expansion methods frequencies and sizes of tube cracks with specific direction are compared by means of accelerated immersion test and also the crack morphology and the specific chemicals from water-chemistry environment are observed through the fracture surface examination.

A Case Study on the Reinforcement of Stabilizing Piles against Slope Failures in a Cut Slope (사면붕괴가 발생된 절개사면에서의 억지말뚝 보강 사례연구)

  • Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.189-199
    • /
    • 2006
  • This paper presents a field study of the stability of slope collapsed during road construction and proposes a reasonable countermeasure if the current slope is unstable. As a result of slope investigation, it was found that the slope includes five tension cracks and the sliding surface is started from the tension crack and propagated the surface soil layer through weathered rock layer. The slope stability analyses are conducted in case of dry and rainfall seasons. The results indicate that the slope is unstable status. A reinforcement method of slope failure should be selected according to the scale of failure. That is, the scale of slope failure, which is classified small, middle and large size determines the reinforcement method of slope. Since the slope interested in this study is large size failure slope, the reinforcement method to control slope failure is selected stabilizing piles, and seed spray and drainage of surface waterare also selected to remain the factor of safety. The SLOPILE (Ver. 3.0) program is applied in order to do stability analysis of slope reinforced by piles. As the result of analysis, the slope reinforced by a row of piles shows the stable state. It is clearly confirmed that the stabilizing of piles can improve the stability of slope.

Possible Methods of Identifying Underground Cavities Using Seismic Waves (지진파를 이용한 지하 공동의 탐지 방법)

  • 김소구;마상윤;김지수
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.137-153
    • /
    • 1996
  • The purpose of this study is to investigate the possibilities of identifying and detecting underground cavities using seismic waves recorded by the fixed and mobile stations. During 18 months of field work we recorded chemical explosions near the Bongdarn station. Seismic Stations were installed on the free surface and underground inside the Samba mine. The seismograms at the fixed(lorg-term) seismic station show abrupt change of polarization characteristics which can he associated with the appearance of P-to-S converted phase(PS) at 150 ~ 200 msec after the first P arrival. This result indicates that converted phases are generated very near to the Bongdarn station at a depth of 190m. Shear-wave splitting phenomena have also been observeci The time delay between fast shear(fS) and slow shear(sS) waves ranges between 30 and 60 msec(average is 42 msec). However, exact time delay between the fast and the slow shear waves can not be accurately measured because of the very short time delay and limitation of sampling rate. Chemical explosion experiments were recorded at stations along various paths to contrast the seismic response of areas with and without cavities. The seismograms recorded at the stations installed at cavity areas show an abrupt change of polarization characteristics but not on the other stations. Seismic waves propagating through the cavity are characterized by the attenuation of high frequency waves and predominantly low frequency seismic waves after the S wave arrivals.

  • PDF

Enhancement of Cookie Quality by Microwave Treatment of Allergy Reaction-reduced "Ofree" Wheat Flour (마이크로웨이브 조사를 통한 알러지 저감 밀 오프리의 제과 가공적성 개선)

  • Park, JinHee;Yoon, Young-Mi;Son, Jae-Han;Choi, Chang-Hyun;Kim, Kyeong-Hoon;Kim, Kyeong-Min;Cheong, Young-Keun;Kang, Chon-Sick;Yang, Jinwoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • The use of flour milled from the Ofree wheat cultivar for baking attenuates allergies because some of the genes related to the allergic reaction have been knocked because some of its genes related to allergic reactions have been knocked down or knocked out through genetic mutation. However, the utilization of this flour is limited because the Ofree grain contains high content of total protein and gluten. Microwave irradiation has been used for changing the protein and gluten characteristics of wheat flour. Thus, this study investigated appropriate conditions of microwave irradiation to enhance the utilization of Ofree flour. As a result, when the flour was microwave-treated for 2 min, although the total protein and gluten contents were not changed, some qualities of the baked sugar-snap cookies, such as spread factor (diameter and thickness) and appearance (crack), were ameliorated. However, excessive heat treatment of the flour for over 3 min led to protein denaturation, which negatively affected the quality of the products. These results indicate that 2 min of microwave irradiation of flour that has high content of total protein and gluten can be used for the enhancement of cookie quality. Therefore, these results are expected to increase the utilization of Ofree wheat flour.

Development of Screening Technology for Marine Waste Disposal (수산폐기물 전처리 용 스크린기술 개발)

  • Moon, Serng-Bae;Jun, Seung-Hwan;Jin, Gang-Gyoo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.57-63
    • /
    • 2009
  • In order to effectively isolate the marine wastes with an effluent standard, the pretreatment process is required to isolate solid materials from the liquid-solid mixed wastes. The more effective the pretreatment becomes, the more processing capacity of posttreatment will be improved and process facilities will be downsized. In this paper, we suggested the vibrating reverse-slant screen, investigated the optimal vibration frequency and vibrator installation angle for the separation of the liquid solid mixed wastes. Several experiments for separation efficiency were conducted under the condition of various vibration frequency($35{\sim}60Hz$, 5Hz interval) and vibrator angle($0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $90^{\circ}$) considering the crack of screen. The screen inclination angle is set up the gradient as $3^{\circ}{\sim}5^{\circ}$ through the preliminary experiments. Also, we made two types of screen(respectively rectangle and square screen). The separation device has shown the optimum efficiency at vibrator angle $0^{\circ}$ and vibration frequency 60Hz, and has no relation with the shape of screen. And the proposed technology is verified by comparing with quantity of suspended solids before and after filtration.

Performance Evaluation of a New Buried Expansion Joint (새로운 매설형 신축이음장치의 성능 평가)

  • Hong, Seong-Hyeop;Park, Sang-Yeol;Jwa, Yong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • Asphalt Plug Joint(APJ) is an buried expansion joint that enabling the smooth connection of expansion gap and road pavement by filling the gap with bituminous mixture of 20% bitumen and 80% aggregate by weight, so it secures evenness and expansion or contraction using the material's properties. Although APJ is designed to have a 6-7 year lifecycle, there are some cases where it is damaged within the first six months. This early damage cause traffic congestion due to frequent repair works, and social cost exceeding the installation cost of the joint. So, in this research, we have developed a new system of Buried Folding Lattice Joint(BFLJ) which can overcome the disadvantages of APJ, and have analyzed and compared it's performance with the conventional APJ through experiment with specimens. As a result of the experiment, APJ had crack formation on both ends of the gap plate, spreading to the surface of the expansion joint. With this result, we can conclude that the reason for early damage is the tension failure due to the concentration of strain in the asphalt mixture along the end of gap plate and the debonding along the joint section. In contrast, the newly developed BFLJ induced even transformation in the joint by applying moving stud and high performance material, and resolved APJ's disadvantage of strain concentration. Therefore, it could be seen that the newly developed BFLJ could overcome the disadvantages of APJ and prevent early damage.

Processing and Properties of FGM Piezoelectric Actuator with Gradient Composition of Pb(Z$n_{1/3}$N$b_{2/3}$)$O_3$-Pb(N$i_{1/3}$N$b_{2/3}$)$O_3$-PZT and PLZT (Pb(Z$n_{1/3}$N$b_{2/3}$)$O_3$-Pb(N$i_{1/3}$N$b_{2/3}$)$O_3$-PZT와 PLZT를 경사조성으로 하는 경사기능 압전엑튜에이터의 제조와 물성)

  • Kim, Han-Su;Choe, Seung-Cheol;Choy, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.261-271
    • /
    • 1993
  • Functionally Gradient Materials(FGM) of 4.5Pb($Ni_{1/3}Nb_{2/3})O_3$-55PZT and PLZT(lO/70 /30, 11/60/40) were prepared. Its dielectric and piezoelectric strain properties were investigated. The FGM were pressed into A/B/ A configuration using two kinds of films, one layer(A) was eliminated from FGM by polishing after sintering at $l250^{\circ}C$, 2 hrs. The acrylic binder system was successfully applied for crack free film through doctor blade method. The thickness of gradent layer in FGM was about 30${\mu}$m. Dielectric properties of FGM show the average value of each side layer. The strain-electric field characteristics of FGM were significantly improved comparison with the other single compositions. The prepared FGM piezoelectric actuator shows about 3${\mu}$m/IOOV displacement.

  • PDF