• Title/Summary/Keyword: Threshold stress intensity factor

Search Result 87, Processing Time 0.024 seconds

An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle (차량용 스프링강의 피로거동에 미치는 온도의 영향)

  • 박경동;류찬욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature (숏피닝 가공재의 저온 피로 강도 평가)

  • 박경동;권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

Fatigue Crack Growth Behavior of Gray Cast Iron for Brake Disc of a Passenger Car (대형승용차 디스크 브레이크용 회주철의 피로균열 전파 거동)

  • Kim, Ho-Kyung;Park, Jin-Ho;Yang, Kyoung-Tak;Choi, Deok-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.19-24
    • /
    • 2006
  • Fatigue crack propagation tests for the brake disc cast iron were conducted for investigating fatigue crack propagation rate(da/dN), crack propagation path and fracture toughness($K_c$) of the material. The threshold stress intensity factor range, ${\Delta}K_{th}$, was found to be about $6MPa{\sqrt{m}}$ at the stress ratio of R = 0.1. Also, fracture toughness value was determined to be $24.7MPa{\sqrt{m}}$. Irregular fatigue fracture surfaces were observed, indicating that fatigue crack growth occurred at the interface between randomly scattered flak graphite and ferrite, where the interfacial strength was relatively weak.

A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I) (용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I))

  • 최용식;김영진;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

The characteristics of Near-thrshold fatigue crack propagation for welding zone in TMCP high strength steels (TMCP 고장력강 용접부의 하한계 피로균열진전 특성평가)

  • 이택순;오대석;이휘원
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 1997
  • Recently developed TMCP steels, which were manufactured by controlled rolling followed by accelerated cooling process, were examined to study their characteristics and weldability. Accelerated cooling type TMCP steel's hardness test result exhibited high value on weld zone. On the contrary, base metal and HAZ exhibited comparatively the similar value. On this experiment result Softening of HAZ is not occurred. in the-heat affected zone, grain size repression be caused by chemical composition properties which a small quantity Al-Ti-B-N. Changing stress ratio near-threshold fatigue crack propagation experiments were carried out. According to this result, crack propagation velocity of the HAZ exhibited slower than the base metal and near-threshold value had increased at the HAZ. Finally accelerated cooling type TMCP steels were exhibited excellent mechanical properties in both strength and toughness.

  • PDF

Development of a Failure Evaluation Diagram and a Database by Two Criteria Method (2기준법에 의한 파괴평가선도 및 데이터베이스 구축의 시도)

  • 이종형;심우진;황은하;강용구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1181-1185
    • /
    • 1990
  • A failure evaluation diagram to evaluate fatigue fracture was developed. The relation between the fatigue limit and the threshold stress intensity factor for the short-cracked specimens of various materials including a piping carbon steel can be rationally predicted by the proposed method. It is shown that the coupled failure evaluation diagram for fatigue and ductile fracture is expecially useful for evaluation of the flaw tolerance as well as the margin of the safety of the pressure vessel and piping. Further, accumulation of fatigue data will be needed to construct an accurate fatigue failure evaluation diagram.

The Effect of Compressive Residual Stress on Computer Corrosion Fatigue Crack of SAE 5155 (SAE 5155강의 컴퓨터부식피로 균열에 미치는 압축잔류응력의 영향)

  • Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyung-Dong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.34-40
    • /
    • 2007
  • Antifatigue failure technology take an important part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore, this paper the effect of compressive residual stress and corrosion of spring steel(SAE 5155)by shot-peening on fatigue crack growth characteristics in stress ratio(R=0.05)was investigated with considering fracture mechanics. By using the methods mentioned above, We arrived at the following conclusions. The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material. And in stage I, ${\Delta}Kth$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material was higher than that of the un-peening material. That is concluded from effect of da/dN. Finally fracture of shot-peening material and un-peening material was identified and discussed in this study.

  • PDF